Cross-domain few-shot learning via adaptive transformer networks

被引:4
|
作者
Paeedeh, Naeem
Pratama, Mahardhika [1 ]
Ma'sum, Muhammad Anwar [1 ]
Mayer, Wolfgang [1 ]
Cao, Zehong [1 ]
Kowlczyk, Ryszard [1 ,2 ]
机构
[1] Univ South Australia, STEM, Adelaide, SA, Australia
[2] Polish Acad Sci, Syst Res Inst, Warsaw, Poland
关键词
Cross-domain few-shot learning; Few-shot learning; Domain adaptation;
D O I
10.1016/j.knosys.2024.111458
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most few -shot learning works rely on the same domain assumption between the base and the target tasks, hindering their practical applications. This paper proposes an adaptive transformer network (ADAPTER), a simple but effective solution for cross -domain few -shot learning where there exist large domain shifts between the base task and the target task. ADAPTER is built upon the idea of bidirectional cross -attention to learn transferable features between the two domains. The proposed architecture is trained with DINO to produce diverse, and less biased features to avoid the supervision collapse problem. Furthermore, the label smoothing approach is proposed to improve the consistency and reliability of the predictions by also considering the predicted labels of the close samples in the embedding space. The performance of ADAPTER is rigorously evaluated in the BSCD-FSL benchmarks in which it outperforms prior arts with significant margins.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Cross-domain few-shot learning via adaptive transformer networks
    Paeedeh, Naeem
    Pratama, Mahardhika
    Ma'sum, Muhammad Anwar
    Mayer, Wolfgang
    Cao, Zehong
    Kowlczyk, Ryszard
    Knowledge-Based Systems, 2024, 288
  • [2] Task-Adaptive Prompted Transformer for Cross-Domain Few-Shot Learning
    Wu, Jiamin
    Liu, Xin
    Yin, Xiaotian
    Zhang, Tianzhu
    Zhang, Yongdong
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 6, 2024, : 6012 - 6020
  • [3] Task context transformer and GCN for few-shot learning of cross-domain
    Li, Pengfang
    Liu, Fang
    Jiao, Licheng
    Li, Lingling
    Chen, Puhua
    Li, Shuo
    NEUROCOMPUTING, 2023, 548
  • [4] Dual Adaptive Representation Alignment for Cross-Domain Few-Shot Learning
    Zhao Y.
    Zhang T.
    Li J.
    Tian Y.
    IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (10) : 11720 - 11732
  • [5] CDCNet: Cross-domain few-shot learning with adaptive representation enhancement
    Li, Xueying
    He, Zihang
    Zhang, Lingyan
    Guo, Shaojun
    Hu, Bin
    Guo, Kehua
    PATTERN RECOGNITION, 2025, 162
  • [6] Cross-domain few-shot learning based on feature adaptive distillation
    Dingwei Zhang
    Hui Yan
    Yadang Chen
    Dichao Li
    Chuanyan Hao
    Neural Computing and Applications, 2024, 36 : 4451 - 4465
  • [7] Cross-domain few-shot learning based on feature adaptive distillation
    Zhang, Dingwei
    Yan, Hui
    Chen, Yadang
    Li, Dichao
    Hao, Chuanyan
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (08): : 4451 - 4465
  • [8] Adaptive Parametric Prototype Learning for Cross-Domain Few-Shot Classification
    Heidari, Marzi
    Alchihabi, Abdullah
    En, Qing
    Guo, Yuhong
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [9] Task-aware Adaptive Learning for Cross-domain Few-shot Learning
    Guo, Yurong
    Du, Ruoyi
    Dong, Yuan
    Hospedales, Timothy
    Song, Yi-Zhe
    Ma, Zhanyu
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 1590 - 1599
  • [10] Understanding Cross-Domain Few-Shot Learning Based on Domain Similarity and Few-Shot Difficulty
    Oh, Jaehoon
    Kim, Sungnyun
    Ho, Namgyu
    Kim, Jin-Hwa
    Song, Hwanjun
    Yun, Se-Young
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,