A Coarse-to-Fine Transformer-Based Network for 3D Reconstruction from Non-Overlapping Multi-View Images

被引:1
|
作者
Shan, Yue [1 ]
Xiao, Jun [1 ]
Liu, Lupeng [1 ]
Wang, Yunbiao [1 ]
Yu, Dongbo [1 ]
Zhang, Wenniu [1 ]
机构
[1] Univ Chinese Acad & Sci, Sch Artificial Intelligence, 19 Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
point cloud reconstruction; Transformer; non-overlapping; multi-view; POINT CLOUD RECONSTRUCTION; SHAPE;
D O I
10.3390/rs16050901
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Reconstructing 3D structures from non-overlapping multi-view images is a crucial task in the field of 3D computer vision, since it is difficult to establish feature correspondences and infer depth from overlapping parts of views. Previous methods, whether generating the surface mesh or volume of an object, face challenges in simultaneously ensuring the accuracy of detailed topology and the integrity of the overall structure. In this paper, we introduce a novel coarse-to-fine Transformer-based reconstruction network to generate precise point clouds from multiple input images at sparse and non-overlapping viewpoints. Specifically, we firstly employ a general point cloud generation architecture enhanced by the concept of adaptive centroid constraint for the coarse point cloud corresponding to the object. Subsequently, a Transformer-based refinement module applies deformation to each point. We design an attention-based encoder to encode both image projection features and point cloud geometric features, along with a decoder to calculate deformation residuals. Experiments on ShapeNet demonstrate that our proposed method outperforms other competing methods.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Research on Multi-View 3D Reconstruction Technology Based on SFM
    Gao, Lei
    Zhao, Yingbao
    Han, Jingchang
    Liu, Huixian
    SENSORS, 2022, 22 (12)
  • [42] Unsupervised 3D reconstruction method based on multi-view propagation
    Luo J.
    Yuan D.
    Zhang L.
    Qu Y.
    Su S.
    Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2024, 42 (01): : 129 - 137
  • [43] FLAME-Based Multi-view 3D Face Reconstruction
    Zheng, Wenzhuo
    Zhao, Junhao
    Liu, Xiaohong
    Pan, Yongyang
    Gan, Zhenghao
    Han, Haozhe
    Liu, Ning
    ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT IV, 2024, 14498 : 327 - 339
  • [44] 3D Face Reconstruction based on Multi-View Stereo Algorithm
    Peng, Keju
    Guan, Tao
    Xu, Chao
    Zhou, Dongxiang
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS IEEE-ROBIO 2014, 2014, : 2310 - 2314
  • [45] 3D Reconstruction from multi-view point cloud Based on particle system
    Hu Wenqiang
    Qu Yi
    2009 IITA INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS ENGINEERING, PROCEEDINGS, 2009, : 500 - +
  • [46] 3D Texture Mapping in Multi-view Reconstruction
    Chen, Zhaolin
    Zhou, Jun
    Chen, Yisong
    Wang, Guoping
    ADVANCES IN VISUAL COMPUTING, ISVC 2012, PT I, 2012, 7431 : 359 - 371
  • [47] Evaluation of Multi-view 3D Reconstruction Software
    Scheoning, Julius
    Heidemann, Gunther
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2015, PT II, 2015, 9257 : 450 - 461
  • [48] 3D Reconstruction with Multi-view Texture Mapping
    Ye, Xiaodan
    Wang, Lianghao
    Li, Dongxiao
    Zhang, Ming
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT III, 2017, 10636 : 198 - 207
  • [49] Multi-View Stereo 3D Edge Reconstruction
    Bignoli, Andrea
    Romanoni, Andrea
    Matteucci, Matteo
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 867 - 875
  • [50] 3D Concept Learning and Reasoning from Multi-View Images
    Hong, Yining
    Lin, Chunru
    Du, Yilun
    Chen, Zhenfang
    Tenenbaum, Joshua B.
    Gan, Chuang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9202 - 9212