Errors in the classification of pregnant women according to Robson ten-group classification system

被引:0
|
作者
Gantt, Deirdre Marlene [1 ]
Misselwitz, Bjorn [2 ]
Boos, Vinzenz [3 ]
Reitter, Anke [1 ,4 ]
机构
[1] Goethe Univ Frankfurt, Theodor Stern Kai, D-60596 Frankfurt, Germany
[2] Fed State Consortium Qual Assurance Hesse, Landesarbeitsgemeinschaft Qualitatssicherung Hesse, Frankfurter Str 10, D-65760 Eschborn, Germany
[3] Univ Zurich, Univ Hosp Zurich, Dept Neonatol, Newborn Res, Frauenklinikstr 10, CH-8091 Zurich, Switzerland
[4] Hosp Zollikerberg, Dept Obstet, Trichtenhauserstr 20, CH-8125 Zollikerberg, Switzerland
关键词
Epidemiology; Perinatal health; Quality indicators; Robson classification; Ten -Group Classification System; CESAREAN-SECTION RATES;
D O I
10.1016/j.ejogrb.2024.02.006
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
Objectives: The Robson Ten-Group Classification System (TGCS) is widely used as a classification system for perinatal analyses such as Caesarean section (CS) rates. In Germany, standardised data sets on deliveries are classified by quality assurance institutions using the TGCS. This observational study aims to evaluate potential errors in the TCGS classification of deliveries. Study design: Manual TGCS classification of all 1370 deliveries in an obstetric unit in 2018 and comparison with semi-automatic TGCS classifications of the quality assurance institution. Results: In the manual classification, 259 out of 1370 births (18.9 %) were assigned to a different Robson group than in the semi-automatic classification. The proportions of births by Robson group were significantly different in TGCS group 1 (32.2 % vs. 37.6 %, p = 0.0034) and group 2 (18.4 % vs. 14.4 %, p = 0.0053). Concordance between manual and semi-automatic classifications ranged from 59.5 % in group 2 to 100.0 % in groups 6, 7, 8, and 9. The most frequent mismatches were for the parameters "onset of labour" in 184 cases (13.4 %), "parity" in 42 cases (3.1 %) and "previous uterine scars" in 23 cases (1.7 %). In the manual classification, there were significant differences in the CS rate in group 1 (7.9 % vs. 2.5 %, p < 0.0001), group 2 (30.2 % vs. 48.2 %, p < 0.0001), and group 4 (14.1 % vs. 37.4 %, p = 0.0004), compared to the semi-automatic classification. Conclusions: Due to incorrect data entry and unclear definitions of criteria, quality assurance data in obstetric databases may contain a relevant proportion of errors, which could influence statistics with TGCS in context of CS rates in international comparisons.
引用
收藏
页码:53 / 57
页数:5
相关论文
共 50 条
  • [1] Ability of women to self-classify into the Robson ten-group classification system
    Cal, Margarida
    Meira, Alexandra
    Clode, Nuno
    INTERNATIONAL JOURNAL OF GYNECOLOGY & OBSTETRICS, 2018, 143 (02) : 195 - 198
  • [2] Applying the Modified Ten-Group Robson Classification in a Spanish Tertiary Hospital
    Gutierrez-Martinez, Serena
    Fernandez-Martinez, Maria Nelida
    Adanez-Garcia, Jose Manuel
    Fernandez-Fernandez, Camino
    Perez-Prieto, Beatriz
    Garcia-Gallego, Ana
    Gomez-Salgado, Juan
    Medina-Diaz, Maria
    Fernandez-Garcia, Daniel
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (01)
  • [3] Validation of a statistical toolkit based on the ten-group Robson Classification of cesarean delivery
    Khan, Mohammad A. Z.
    Chehab, Muhannad H.
    Al Hamwi, Hassan M.
    Alloub, Mohamed I. A.
    INTERNATIONAL JOURNAL OF GYNECOLOGY & OBSTETRICS, 2020, 149 (01) : 71 - 75
  • [4] Identifying strategies to reduce cesarean section rates by using Robson ten-group classification
    Topcu, Hasan Onur
    ozel, Sule
    Ustun, Yaprak
    JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE, 2021, 34 (16) : 2616 - 2622
  • [5] Robson Ten Group Classification System Applied to Women with Severe Maternal Morbidity
    Ferreira, Elton Carlos
    Costa, Maria Laura
    Cecatti, Jose Guilherme
    Haddad, Samira M.
    Parpinelli, Mary Angela
    Robson, Michael S.
    BIRTH-ISSUES IN PERINATAL CARE, 2015, 42 (01): : 38 - 47
  • [6] Cesarean delivery rates based on time and indication using the Robson Ten-Group Classification System: Assessment at a Turkish tertiary center
    Golbasi, Ceren
    Golbasi, Hakan
    Bayraktar, Burak
    Omeroglu, Ibrahim
    Vural, Tayfun
    Yildirim, Alkim Gulsah Sahingoz
    Ekin, Atalay
    JOURNAL OF OBSTETRICS AND GYNAECOLOGY RESEARCH, 2023, 49 (03) : 883 - 892
  • [7] Using Robson's Ten-Group Classification System for comparing caesarean section rates in Europe: an analysis of routine data from the Euro-Peristat study
    Zeitlin, J.
    Durox, M.
    Macfarlane, A.
    Alexander, S.
    Heller, G.
    Loghi, M.
    Nijhuis, J.
    Olafsdottir, H. Sol
    Mierzejewska, E.
    Gissler, M.
    Blondel, B.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2021, 128 (09) : 1444 - 1453
  • [8] Robson ten group classification system for Caesarean sections across Europe: A systematic review and meta-analysis
    El Radaf, Viktoria
    Campos, Leticia Nunes
    Savona-Ventura, Charles
    Mahmood, Tahir
    Zaigham, Mehreen
    EUROPEAN JOURNAL OF OBSTETRICS & GYNECOLOGY AND REPRODUCTIVE BIOLOGY, 2025, 305 : 178 - 198
  • [9] Achieving an appropriate cesarean birth (CB) rate and analyzing the changes using the Robson Ten-Group Classification System (TGCS): Lessons from a Tertiary Care Hospital in Italy
    di Pasquo, Elvira
    Ricciardi, Piera
    Valenti, Alissa
    Fieni, Stefania
    Ghi, Tullio
    Frusca, Tiziana
    BIRTH-ISSUES IN PERINATAL CARE, 2022, 49 (03): : 430 - 439
  • [10] Stillbirth mortality by Robson ten-group classification system: A cross-sectional registry of 80 663 births from 16 hospital in sub-Saharan Africa
    Hanson, Claudia
    Annerstedt, Kristi Sidney
    Alsina, Maria Del Rosario
    Abeid, Muzdalifat
    Kidanto, Hussein L.
    Alvesson, Helle Molsted
    Pembe, Andrea B.
    Waiswa, Peter
    Dossou, Jean-Paul
    Chipeta, Effie
    Straneo, Manuela
    Benova, Lenka
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2024, 131 (11) : 1465 - 1474