Pore evolution mechanisms during directed energy deposition additive manufacturing

被引:58
作者
Zhang, Kai [1 ,2 ]
Chen, Yunhui [1 ,2 ,3 ,4 ]
Marussi, Sebastian [1 ,2 ]
Fan, Xianqiang [1 ,2 ]
Fitzpatrick, Maureen [1 ,3 ]
Bhagavath, Shishira [1 ,2 ]
Majkut, Marta [3 ]
Lukic, Bratislav [3 ]
Jakata, Kudakwashe [3 ,5 ]
Rack, Alexander [3 ]
Jones, Martyn A. [6 ]
Shinjo, Junji [7 ]
Panwisawas, Chinnapat [8 ]
Leung, Chu Lun Alex [1 ,2 ]
Lee, Peter D. [1 ,2 ]
机构
[1] UCL, Dept Mech Engn, London WC1E 7JE, England
[2] Res Complex Harwell,Harwell Campus, Didcot OX11 0FA, England
[3] ESRF European Synchrotron, F-38000 Grenoble, France
[4] RMIT Univ, Sch Engn, Melbourne, Vic 3000, Australia
[5] Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England
[6] Rolls Royce PLC, POB 31, Derby DE24 8BJ, England
[7] Shimane Univ, Next Generat Tatara Cocreat Ctr, Matsue 6908504, Japan
[8] Queen Mary Univ London, Sch Engn & Mat Sci, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
ALUMINUM-COPPER ALLOYS; HYDROGEN POROSITY; LASER; MICROSTRUCTURE; SOLIDIFICATION; SIMULATION; GENERATION; MORPHOLOGY; DYNAMICS; BEHAVIOR;
D O I
10.1038/s41467-024-45913-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Porosity in directed energy deposition (DED) deteriorates mechanical performances of components, limiting safety-critical applications. However, how pores arise and evolve in DED remains unclear. Here, we reveal pore evolution mechanisms during DED using in situ X-ray imaging and multi-physics modelling. We quantify five mechanisms contributing to pore formation, migration, pushing, growth, removal and entrapment: (i) bubbles from gas atomised powder enter the melt pool, and then migrate circularly or laterally; (ii) small bubbles can escape from the pool surface, or coalesce into larger bubbles, or be entrapped by solidification fronts; (iii) larger coalesced bubbles can remain in the pool for long periods, pushed by the solid/liquid interface; (iv) Marangoni surface shear flow overcomes buoyancy, keeping larger bubbles from popping out; and (v) once large bubbles reach critical sizes they escape from the pool surface or are trapped in DED tracks. These mechanisms can guide the development of pore minimisation strategies. Porosity is a key issue in additive manufacturing (AM). Here, the authors reveal the bubble evolution mechanisms including formation, coalescence, pushing, growth, entrainment, escape, and entrapment during directed energy deposition AM using in situ X-ray imaging and multiphysics modelling.
引用
收藏
页数:14
相关论文
共 65 条
[1]   Simulation of the three-dimensional morphology of solidification porosity in an aluminium-silicon alloy [J].
Atwood, RC ;
Lee, PD .
ACTA MATERIALIA, 2003, 51 (18) :5447-5466
[2]   Diffusion-controlled growth of hydrogen pores in aluminium-silicon castings:: In situ observation and modelling [J].
Atwood, RC ;
Sridhar, S ;
Zhang, W ;
Lee, PD .
ACTA MATERIALIA, 2000, 48 (02) :405-417
[3]   Revealing internal flow behaviour in arc welding and additive manufacturing of metals [J].
Aucott, Lee ;
Dong, Hongbiao ;
Mirihanage, Wajira ;
Atwood, Robert ;
Kidess, Anton ;
Gao, Shian ;
Wen, Shuwen ;
Marsden, John ;
Feng, Shuo ;
Tong, Mingming ;
Connolley, Thomas ;
Drakopoulos, Michael ;
Kleijn, Chris R. ;
Richardson, Ian M. ;
Browne, David J. ;
Mathiesen, Ragnvald H. ;
Atkinson, Helen. V. .
NATURE COMMUNICATIONS, 2018, 9
[4]   A computational study on the three-dimensional printability of precipitate-strengthened nickel-based superalloys [J].
Basoalto, H. C. ;
Panwisawas, C. ;
Sovani, Y. ;
Anderson, M. J. ;
Turner, R. P. ;
Saunders, B. ;
Brooks, J. W. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2220)
[5]   On the role of the powder stream on the heat and fluid flow conditions during Directed Energy Deposition of maraging steel-Multiphysics modeling and experimental validation [J].
Bayat, Mohamad ;
Nadimpalli, Venkata K. ;
Biondani, Francesco G. ;
Jafarzadeh, Sina ;
Thorborg, Jesper ;
Tiedje, Niels S. ;
Bissacco, Giuliano ;
Pedersen, David B. ;
Hattel, Jesper H. .
ADDITIVE MANUFACTURING, 2021, 43
[6]   Role of the local stress systems on microstructural inhomogeneity during semisolid injection [J].
Bhagavath, S. ;
Gong, Z. ;
Wigger, T. ;
Shah, S. ;
Ghaffari, B. ;
Li, M. ;
Marathe, S. ;
Lee, P. D. ;
Karagadde, S. .
ACTA MATERIALIA, 2021, 214
[7]   High-density direct laser deposition (DLD) of CM247LC alloy: microstructure, porosity and cracks [J].
Bidare, Prveen ;
Mehmeti, Aldi ;
Jimenez, Amaia ;
Li, Sheng ;
Garman, Chris ;
Dimov, Stefan ;
Essa, Khamis .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (11-12) :8063-8074
[8]  
Chanson H., 1996, AIR BUBBLE ENTRAINME
[9]   Synchrotron X-ray imaging of directed energy deposition additive manufacturing of titanium alloy Ti-6242 [J].
Chen, Yunhui ;
Clark, Samuel J. ;
Sinclair, Lorna ;
Leung, Chu Lun Alex ;
Marussi, Sebastian ;
Connolley, Thomas ;
Atwood, Robert C. ;
Baxter, Gavin J. ;
Jones, Martyn A. ;
Todd, Iain ;
Lee, Peter D. .
ADDITIVE MANUFACTURING, 2021, 41
[10]   Correlative Synchrotron X-ray Imaging and Diffraction of Directed Energy Deposition Additive Manufacturing [J].
Chen, Yunhui ;
Clark, Samuel J. ;
Collins, David M. ;
Marussi, Sebastian ;
Hunt, Simon A. ;
Fenech, Danielle M. ;
Connolley, Thomas ;
Atwood, Robert C. ;
Magdysyuk, Oxana, V ;
Baxter, Gavin J. ;
Jones, Martyn A. ;
Leung, Chu Lun Alex ;
Lee, Peter D. .
ACTA MATERIALIA, 2021, 209