Enhancing malignancy prediction in thyroid nodules: A multimodal ultrasound radiomics approach in TI-RADS category 4 lesions

被引:4
作者
Li, Jian [1 ]
Li, Siyao [2 ,3 ]
Zhou, Wang [1 ]
Duan, Yayang [1 ,4 ]
Zheng, Hui [1 ,4 ]
机构
[1] Anhui Med Univ, Dept Ultrasound, Affiliated Hosp 1, Hefei, Peoples R China
[2] Anhui Med Univ, Affiliated Hosp 2, Dept Ultrasound Med, Hefei, Peoples R China
[3] Qingdao Univ, Affiliated Yantai Yuhuangding Hosp, Dept Ultrasound, Yantai, Shandong, Peoples R China
[4] Anhui Med Univ, Affiliated Hosp 1, Dept Ultrasound, 218 Jixi Rd, Hefei 230022, Anhui, Peoples R China
关键词
elasticity imaging techniques; radiomics; thyroid nodules; ultrasound; SYSTEM;
D O I
10.1002/jcu.23662
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Purpose: To explore the diagnostic value of intralesional and perilesional radiomics based on multimodal ultrasound (US) images in predicting the malignant ACR TIRADS 4 thyroid nodules (TNs). Methods: A total of 297 cases of TNs in patients who underwent preoperative thyroid grayscale US and shear wave elastography (STE) were enrolled (training cohort: n = 150, internal validation cohort: n = 77, external validation cohort: n = 70). Regions of interests (ROIs) were delineated on grayscale US images and STE images, and then an isotropic expansion of 1.0, 1.5, 2.0, 2.5, and 3.0 mm was applied. Predictive models were established using recursive feature elimination-support vector machines (RFE-SVM) based on radiomics features calculated by random forest. Results: The perilesional ROI1.5mm expansion achieved the highest area under curve (AUC) (AUC: 0.753 for grayscale US, 0.728 for STE; 95% confidence interval (CI): 0.664-0.743, 0.684-0.739, respectively). The joint model had the highest AUC values of 0.936 in the training dataset, 0.926 in internal dataset, and 0.893 in external dataset. The calibration curve showed good consistency and the decision curve indicated a greater clinical net benefit of the joint model. Conclusion: Joint model containing perilesional radiomics (1.5 mm) had significant value in predicting the malignant ACR TIRADS 4 TNs.
引用
收藏
页码:511 / 521
页数:11
相关论文
共 22 条
[11]   Radiomics: Extracting more information from medical images using advanced feature analysis [J].
Lambin, Philippe ;
Rios-Velazquez, Emmanuel ;
Leijenaar, Ralph ;
Carvalho, Sara ;
van Stiphout, Ruud G. P. M. ;
Granton, Patrick ;
Zegers, Catharina M. L. ;
Gillies, Robert ;
Boellard, Ronald ;
Dekker, Andre ;
Aerts, Hugo J. W. L. .
EUROPEAN JOURNAL OF CANCER, 2012, 48 (04) :441-446
[12]   Predicting Malignancy in Thyroid Nodules: Radiomics Score Versus 2017 American College of Radiology Thyroid Imaging, Reporting and Data System [J].
Liang, Jinyu ;
Huang, Xiaowen ;
Hu, Hangtong ;
Liu, Yihao ;
Zhou, Qian ;
Cao, Qinghua ;
Wang, Wei ;
Liu, Baoxian ;
Zheng, Yanling ;
Li, Xin ;
Xie, Xiaoyan ;
Lu, Mingde ;
Peng, Sui ;
Liu, Longzhong ;
Xiao, Haipeng .
THYROID, 2018, 28 (08) :1024-1033
[13]   A Review of the Role of Ultrasound Radiomics and Its Application and Limitations in the Investigation of Thyroid Disease [J].
Lu, Wen-Wu ;
Zhang, Di ;
Ni, Xue-Jun .
MEDICAL SCIENCE MONITOR, 2022, 28
[14]  
Lundberg SM, 2017, ADV NEUR IN, V30
[15]   Radiomics Score Combined with ACR TI-RADS in Discriminating Benign and Malignant Thyroid Nodules Based on Ultrasound Images: A Retrospective Study [J].
Luo, Peng ;
Fang, Zheng ;
Zhang, Ping ;
Yang, Yang ;
Zhang, Hua ;
Su, Lei ;
Wang, Zhigang ;
Ren, Jianli .
DIAGNOSTICS, 2021, 11 (06)
[16]   Shear wave elastography in the diagnosis of breast non-mass lesions: factors associated with false negative and false positive results [J].
Park, So Yoon ;
Choi, Ji Soo ;
Han, Boo-Kyung ;
Ko, Eun Young ;
Ko, Eun Sook .
EUROPEAN RADIOLOGY, 2017, 27 (09) :3788-3798
[17]   Combining radiomics with ultrasound-based risk stratification systems for thyroid nodules: an approach for improving performance [J].
Park, Vivian Y. ;
Lee, Eunjung ;
Lee, Hye Sun ;
Kim, Hye Jung ;
Yoon, Jiyoung ;
Son, Jinwoo ;
Song, Kijun ;
Moon, Hee Jung ;
Yoon, Jung Hyun ;
Kim, Ga Ram ;
Kwak, Jin Young .
EUROPEAN RADIOLOGY, 2021, 31 (04) :2405-2413
[18]   Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].
Sung, Hyuna ;
Ferlay, Jacques ;
Siegel, Rebecca L. ;
Laversanne, Mathieu ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin ;
Bray, Freddie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2021, 71 (03) :209-249
[19]   ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee [J].
Tessler, Franklin N. ;
Middleton, William D. ;
Grant, Edward G. ;
Hoang, Jenny K. ;
Berland, Lincoln L. ;
Teefey, Sharlene A. ;
Cronan, John J. ;
Beland, Michael D. ;
Desser, Terry S. ;
Frates, Mary C. ;
Hammers, Lynwood W. ;
Hamper, Ulrike M. ;
Langer, Jill E. ;
Reading, Carl C. ;
Scoutt, Leslie M. ;
Stavros, A. Thomas .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2017, 14 (05) :587-595
[20]   Computational Radiomics System to Decode the Radiographic Phenotype [J].
van Griethuysen, Joost J. M. ;
Fedorov, Andriy ;
Parmar, Chintan ;
Hosny, Ahmed ;
Aucoin, Nicole ;
Narayan, Vivek ;
Beets-Tan, Regina G. H. ;
Fillion-Robin, Jean-Christophe ;
Pieper, Steve ;
Aerts, Hugo J. W. L. .
CANCER RESEARCH, 2017, 77 (21) :E104-E107