Enhancing malignancy prediction in thyroid nodules: A multimodal ultrasound radiomics approach in TI-RADS category 4 lesions

被引:4
作者
Li, Jian [1 ]
Li, Siyao [2 ,3 ]
Zhou, Wang [1 ]
Duan, Yayang [1 ,4 ]
Zheng, Hui [1 ,4 ]
机构
[1] Anhui Med Univ, Dept Ultrasound, Affiliated Hosp 1, Hefei, Peoples R China
[2] Anhui Med Univ, Affiliated Hosp 2, Dept Ultrasound Med, Hefei, Peoples R China
[3] Qingdao Univ, Affiliated Yantai Yuhuangding Hosp, Dept Ultrasound, Yantai, Shandong, Peoples R China
[4] Anhui Med Univ, Affiliated Hosp 1, Dept Ultrasound, 218 Jixi Rd, Hefei 230022, Anhui, Peoples R China
关键词
elasticity imaging techniques; radiomics; thyroid nodules; ultrasound; SYSTEM;
D O I
10.1002/jcu.23662
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Purpose: To explore the diagnostic value of intralesional and perilesional radiomics based on multimodal ultrasound (US) images in predicting the malignant ACR TIRADS 4 thyroid nodules (TNs). Methods: A total of 297 cases of TNs in patients who underwent preoperative thyroid grayscale US and shear wave elastography (STE) were enrolled (training cohort: n = 150, internal validation cohort: n = 77, external validation cohort: n = 70). Regions of interests (ROIs) were delineated on grayscale US images and STE images, and then an isotropic expansion of 1.0, 1.5, 2.0, 2.5, and 3.0 mm was applied. Predictive models were established using recursive feature elimination-support vector machines (RFE-SVM) based on radiomics features calculated by random forest. Results: The perilesional ROI1.5mm expansion achieved the highest area under curve (AUC) (AUC: 0.753 for grayscale US, 0.728 for STE; 95% confidence interval (CI): 0.664-0.743, 0.684-0.739, respectively). The joint model had the highest AUC values of 0.936 in the training dataset, 0.926 in internal dataset, and 0.893 in external dataset. The calibration curve showed good consistency and the decision curve indicated a greater clinical net benefit of the joint model. Conclusion: Joint model containing perilesional radiomics (1.5 mm) had significant value in predicting the malignant ACR TIRADS 4 TNs.
引用
收藏
页码:511 / 521
页数:11
相关论文
共 22 条
[1]   Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas [J].
Beig, Niha ;
Khorrami, Mohammadhadi ;
Alilou, Mehdi ;
Prasanna, Prateek ;
Braman, Nathaniel ;
Orooji, Mahdi ;
Rakshit, Sagar ;
Bera, Kaustav ;
Rajiah, Prabhakar ;
Ginsberg, Jennifer ;
Donatelli, Christopher ;
Thawani, Rajat ;
Yang, Michael ;
Jacono, Frank ;
Tiwari, Pallavi ;
Velcheti, Vamsidhar ;
Gilkeson, Robert ;
Linden, Philip ;
Madabhushi, Anant .
RADIOLOGY, 2019, 290 (03) :783-792
[2]   Ultrasound imaging in thyroid nodule diagnosis, therapy, and follow-up: Current status and future trends [J].
Boers, Tim ;
Braak, Sicco J. J. ;
Rikken, Nicole E. T. ;
Versluis, Michel ;
Manohar, Srirang .
JOURNAL OF CLINICAL ULTRASOUND, 2023, 51 (06) :1087-1100
[3]   Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer [J].
Braman, Nathaniel ;
Prasanna, Prateek ;
Whitney, Jon ;
Singh, Salendra ;
Beig, Niha ;
Etesami, Maryam ;
Bates, David D. B. ;
Gallagher, Katherine ;
Bloch, B. Nicolas ;
Vulchi, Manasa ;
Turk, Paulette ;
Bera, Kaustav ;
Abraham, Jame ;
Sikov, William M. ;
Somlo, George ;
Harris, Lyndsay N. ;
Gilmore, Hannah ;
Plecha, Donna ;
Varadan, Vinay ;
Madabhushi, Anant .
JAMA NETWORK OPEN, 2019, 2 (04)
[4]   Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging [J].
Chen, Shuling ;
Feng, Shiting ;
Wei, Jingwei ;
Liu, Fei ;
Li, Bin ;
Li, Xin ;
Hou, Yang ;
Gu, Dongsheng ;
Tang, Mimi ;
Xiao, Han ;
Jia, Yingmei ;
Peng, Sui ;
Tian, Jie ;
Kuang, Ming .
EUROPEAN RADIOLOGY, 2019, 29 (08) :4177-4187
[5]   Identification of prognostic biomarkers related to the tumor microenvironment in thyroid carcinoma [J].
Du, Jun-wei ;
Li, Guo-quan ;
Li, Yang-sen ;
Qiu, Xin-guang .
SCIENTIFIC REPORTS, 2021, 11 (01)
[6]   Diagnostic Accuracy Evaluation of Two-Dimensional Shear Wave Elastography in the Differentiation Between Benign and Malignant Thyroid Nodules Systematic Review and Meta-analysis [J].
Filho, Raimundo Holanda Carneiro ;
Pereira, Fernando Linhares ;
Iared, Wagner .
JOURNAL OF ULTRASOUND IN MEDICINE, 2020, 39 (09) :1729-1741
[7]   US Fine-Needle Aspiration Biopsy for Thyroid Malignancy: Diagnostic Performance of Seven Society Guidelines Applied to 2000 Thyroid Nodules [J].
Ha, Eun Ju ;
Na, Dong Gyu ;
Baek, Jung Hwan ;
Sung, Jin Yong ;
Kim, Ji-hoon ;
Kang, So Young .
RADIOLOGY, 2018, 287 (03) :893-900
[8]   Reduction in Thyroid Nodule Biopsies and Improved Accuracy with American College of Radiology Thyroid Imaging Reporting and Data System [J].
Hoang, Jenny K. ;
Middleton, William D. ;
Farjat, Alfredo E. ;
Langer, Jill E. ;
Reading, Carl C. ;
Teefey, Sharlene A. ;
Abinanti, Nicole ;
Boschini, Fernando J. ;
Bronner, Abraham J. ;
Dahiya, Nirvikar ;
Hertzberg, Barbara S. ;
Newman, Justin R. ;
Scanga, Daniel ;
Vogler, Robert C. ;
Tessler, Franklin N. .
RADIOLOGY, 2018, 287 (01) :185-193
[9]   Nomogram Combining Radiomics With the American College of Radiology Thyroid Imaging Reporting and Data System Can Improve Predictive Performance for Malignant Thyroid Nodules [J].
Huang, Xingzhi ;
Wu, Zhenghua ;
Zhou, Aiyun ;
Min, Xiang ;
Qi, Qi ;
Zhang, Cheng ;
Chen, Songli ;
Xu, Pan .
FRONTIERS IN ONCOLOGY, 2021, 11
[10]   Nomogram Based on Shear-Wave Elastography Radiomics Can Improve Preoperative Cervical Lymph Node Staging for Papillary Thyroid Carcinoma [J].
Jiang, Meng ;
Li, Changli ;
Tang, Shichu ;
Lv, Wenzhi ;
Yi, Aijiao ;
Wang, Bin ;
Yu, Songyuan ;
Cui, Xinwu ;
Dietrich, Christoph F. .
THYROID, 2020, 30 (06) :885-897