An Adaptive Fast-Multipole-Accelerated Hybrid Boundary Integral Equation Method for Accurate Diffusion Curves

被引:2
作者
Bang, Seungbae [1 ,2 ]
Serkh, Kirill [1 ]
Stein, Oded [3 ,4 ,5 ]
Jacobson, Alec [1 ,6 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
[2] Amazon, Seattle, WA 98109 USA
[3] Columbia Univ, New York, NY 10027 USA
[4] MIT, Cambridge, MA 02139 USA
[5] Univ Southern Calif, Los Angeles, CA 90007 USA
[6] Adobe Res, Toronto, ON, Canada
来源
ACM TRANSACTIONS ON GRAPHICS | 2023年 / 42卷 / 06期
基金
瑞士国家科学基金会; 加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
Diffusion Curve; Boundary Element Method; Boundary Integral Equation Method; Fast Multipole Method;
D O I
10.1145/3618374
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In theory, diffusion curves promise complex color gradations for infinite-resolution vector graphics. In practice, existing realizations suffer from poor scaling, discretization artifacts, or insufficient support for rich boundary conditions. Previous applications of the boundary element method to diffusion curves have relied on polygonal approximations, which either forfeit the high-order smoothness of Bezier curves, or, when the polygonal approximation is extremely detailed, result in large and costly systems of equations that must be solved. In this paper, we utilize the boundary integral equation method to accurately and efficiently solve the underlying partial differential equation. Given a desired resolution and viewport, we then interpolate this solution and use the boundary element method to render it. We couple this hybrid approach with the fast multipole method on a non-uniform quadtree for efficient computation. Furthermore, we introduce an adaptive strategy to enable truly scalable infinite-resolution diffusion curves.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] A PARALLEL FAST MULTIPOLE METHOD FOR A SPACE-TIME BOUNDARY ELEMENT METHOD FOR THE HEAT EQUATION
    Watschinger, Raphael
    Merta, Michal
    Of, Guenther
    Zapletal, Jan
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04) : C320 - C345
  • [42] Diagonal form fast multipole boundary element method for 2D acoustic problems based on Burton-Miller boundary integral equation formulation and its applications
    Wu, Hai-jun
    Jiang, Wei-kang
    Liu, Y. J.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2011, 32 (08) : 981 - 996
  • [43] An adaptive h-refinement method for the boundary element fast multipole method for quasi-static electromagnetic modeling
    Wartman, William A.
    Weise, Konstantin
    Rachh, Manas
    Morales, Leah
    Deng, Zhi-De
    Nummenmaa, Aapo
    Makaroff, Sergey N.
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (05)
  • [44] Analysis of Numerical Integration Error for Bessel Integral Identity in Fast Multipole Method for 2D Helmholtz Equation
    吴海军
    蒋伟康
    刘轶军
    Journal of Shanghai Jiaotong University(Science), 2010, 15 (06) : 690 - 693
  • [45] Analysis of numerical integration error for Bessel integral identity in fast multipole method for 2D Helmholtz equation
    Wu H.-J.
    Jiang W.-K.
    Liu Y.-J.
    Journal of Shanghai Jiaotong University (Science), 2010, 15 (6) : 690 - 693
  • [46] The Boundary Element Method with a Fast Multipole Accelerated Integration Technique for 3D Elastostatic Problems with Arbitrary Body Forces
    Qiao Wang
    Wei Zhou
    Yonggang Cheng
    Gang Ma
    Xiaolin Chang
    Qiang Huang
    Journal of Scientific Computing, 2017, 71 : 1238 - 1264
  • [47] The Boundary Element Method with a Fast Multipole Accelerated Integration Technique for 3D Elastostatic Problems with Arbitrary Body Forces
    Wang, Qiao
    Zhou, Wei
    Cheng, Yonggang
    Ma, Gang
    Chang, Xiaolin
    Huang, Qiang
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 71 (03) : 1238 - 1264
  • [48] An efficient preconditioner for adaptive Fast Multipole accelerated Boundary Element Methods to model time-harmonic 3D wave propagation
    Amlani, Faisal
    Chaillat, Stephanie
    Loseille, Adrien
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 352 : 189 - 210
  • [49] An O(N) Fast Multipole Hybrid Boundary Node Method for 3D Elasticity
    Wang, Q.
    Miao, Y.
    Zhu, H. P.
    Zhang, C.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2012, 28 (01): : 1 - 25
  • [50] Adaptive meshing for the boundary integral equation method: Definition and test of an error estimator
    Ashtiani, BH
    Krahenbuhl, L
    Nicolas, A
    IEEE TRANSACTIONS ON MAGNETICS, 1998, 34 (05) : 3443 - 3446