Non-invasive detection of cardiac allograft rejection among heart transplant recipients using an electrocardiogram based deep learning model

被引:11
作者
Adedinsewo, Demilade [1 ]
Hardway, Heather D. [2 ]
Morales-Lara, Andrea Carolina [1 ]
Wieczorek, Mikolaj A. [2 ]
Johnson, Patrick W. [2 ]
Douglass, Erika J. [1 ]
Dangott, Bryan J. [3 ]
Nakhleh, Raouf E. [3 ]
Narula, Tathagat [4 ]
Patel, Parag C. [4 ]
Goswami, Rohan M. [4 ]
Lyle, Melissa A. [4 ]
Heckman, Alexander J. [1 ]
Leoni-Moreno, Juan C. [4 ]
Steidley, D. Eric [5 ]
Arsanjani, Reza [5 ]
Hardaway, Brian [5 ]
Abbas, Mohsin [6 ]
Behfar, Atta [6 ]
Attia, Zachi, I [6 ]
Lopez-Jimenez, Francisco [6 ]
Noseworthy, Peter A. [6 ]
Friedman, Paul [6 ]
Carter, Rickey E. [2 ]
Yamani, Mohamad [1 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, Div Cardiovasc Dis, 4500 San Pablo Rd, Jacksonville, FL 32224 USA
[2] Mayo Clin, Dept Quantitat Hlth Sci, Jacksonville, FL USA
[3] Mayo Clin, Dept Lab Med & Pathol, Jacksonville, FL USA
[4] Mayo Clin, Dept Transplantat, Jacksonville, FL USA
[5] Mayo Clin, Dept Cardiovasc Med, Phoenix, AZ USA
[6] Mayo Clin, Dept Cardiovasc Med, Rochester, MN USA
来源
EUROPEAN HEART JOURNAL - DIGITAL HEALTH | 2023年 / 4卷 / 02期
基金
美国国家卫生研究院;
关键词
Artificial intelligence; Cardiac allograft rejection; Deep learning; Electrocardiography; Heart transplantation; MANAGEMENT; STATEMENT; DIAGNOSIS; AREAS;
D O I
10.1093/ehjdh/ztad001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
AimsCurrent non-invasive screening methods for cardiac allograft rejection have shown limited discrimination and are yet to be broadly integrated into heart transplant care. Given electrocardiogram (ECG) changes have been reported with severe cardiac allograft rejection, this study aimed to develop a deep-learning model, a form of artificial intelligence, to detect allograft rejection using the 12-lead ECG (AI-ECG).Methods and resultsHeart transplant recipients were identified across three Mayo Clinic sites between 1998 and 2021. Twelve-lead digital ECG data and endomyocardial biopsy results were extracted from medical records. Allograft rejection was defined as moderate or severe acute cellular rejection (ACR) based on International Society for Heart and Lung Transplantation guidelines. The extracted data (7590 unique ECG-biopsy pairs, belonging to 1427 patients) was partitioned into training (80%), validation (10%), and test sets (10%) such that each patient was included in only one partition. Model performance metrics were based on the test set (n = 140 patients; 758 ECG-biopsy pairs). The AI-ECG detected ACR with an area under the receiver operating curve (AUC) of 0.84 [95% confidence interval (CI): 0.78-0.90] and 95% (19/20; 95% CI: 75-100%) sensitivity. A prospective proof-of-concept screening study (n = 56; 97 ECG-biopsy pairs) showed the AI-ECG detected ACR with AUC = 0.78 (95% CI: 0.61-0.96) and 100% (2/2; 95% CI: 16-100%) sensitivity.ConclusionAn AI-ECG model is effective for detection of moderate-to-severe ACR in heart transplant recipients. Our findings could improve transplant care by providing a rapid, non-invasive, and potentially remote screening option for cardiac allograft function. Graphical abstractAn artificial intelligence enabled ECG can effectively detect cardiac allograft rejection among heart transplant recipients. AI, artificial intelligence; AUC, area under the receiver operating characteristic curve; ECG, electrocardiogram; ISHLT, International Society for Heart and Lung Transplantation; NPV, negative predictive value; PPV, positive predictive value.
引用
收藏
页码:71 / 80
页数:10
相关论文
共 46 条
[1]   Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea [J].
Adedinsewo, Demilade ;
Carter, Rickey E. ;
Attia, Zachi ;
Johnson, Patrick ;
Kashou, Anthony H. ;
Dugan, Jennifer L. ;
Albus, Michael ;
Sheele, Johnathan M. ;
Bellolio, Fernanda ;
Friedman, Paul A. ;
Lopez-Jimenez, Francisco ;
Noseworthy, Peter A. .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (08) :E008437
[2]   Cell-Free DNA to Detect Heart Allograft Acute Rejection [J].
Agbor-Enoh, Sean ;
Shah, Palak ;
Tunc, Ilker ;
Hsu, Steven ;
Russell, Stuart ;
Feller, Erika ;
Shah, Keyur ;
Rodrigo, Maria E. ;
Najjar, Samer S. ;
Kong, Hyesik ;
Pirooznia, Mehdi ;
Fideli, Ulgen ;
Bikineyeva, Alfiya ;
Marishta, Argit ;
Bhatti, Kenneth ;
Yang, Yanqin ;
Mutebi, Cedric ;
Yu, Kai ;
Jang, Moon Kyoo ;
Marboe, Charles ;
Berry, Gerald J. ;
Valantine, Hannah A. .
CIRCULATION, 2021, 143 (12) :1184-1197
[3]  
[Anonymous], 2022, Identify Heart Transplant Injury with HeartCare
[4]   An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction [J].
Attia, Zachi, I ;
Noseworthy, Peter A. ;
Lopez-Jimenez, Francisco ;
Asirvatham, Samuel J. ;
Deshmukh, Abhishek J. ;
Gersh, Bernard J. ;
Carter, Rickey E. ;
Yao, Xiaoxi ;
Rabinstein, Alejandro A. ;
Erickson, Brad J. ;
Kapa, Suraj ;
Friedman, Paul A. .
LANCET, 2019, 394 (10201) :861-867
[5]   Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram [J].
Attia, Zachi I. ;
Kapa, Suraj ;
Lopez-Jimenez, Francisco ;
McKie, Paul M. ;
Ladewig, Dorothy J. ;
Satam, Gaurav ;
Pellikka, Patricia A. ;
Enriquez-Sarano, Maurice ;
Noseworthy, Peter A. ;
Munger, Thomas M. ;
Asirvatham, Samuel J. ;
Scott, Christopher G. ;
Carter, Rickey E. ;
Friedman, Paul A. .
NATURE MEDICINE, 2019, 25 (01) :70-+
[6]   Early Denervation and Later Reinnervation of the Heart Following Cardiac Transplantation: A Review [J].
Awad, Morcos ;
Czer, Lawrence S. C. ;
Hou, Margaret ;
Golshani, Sarah S. ;
Goltche, Michael ;
De Robertis, Michele ;
Kittleson, Michelle ;
Patel, Jignesh ;
Azarbal, Babak ;
Kransdorf, Evan ;
Esmailian, Fardad ;
Trento, Alfredo ;
Kobashigawa, Jon A. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2016, 5 (11)
[7]  
BILLINGHAM ME, 1990, J HEART TRANSPLANT, V9, P587
[8]  
CAVES PK, 1974, LANCET, V1, P821
[9]   Antibody-Mediated Rejection in Cardiac Transplantation: Emerging Knowledge in Diagnosis and Management A Scientific Statement From the American Heart Association [J].
Colvin, Monica M. ;
Cook, Jennifer L. ;
Chang, Patricia ;
Francis, Gary ;
Hsu, Daphne T. ;
Kiernan, Michael S. ;
Kobashigawa, Jon A. ;
Lindenfeld, JoAnn ;
Masri, Sofia Carolina ;
Miller, Dylan ;
O'Connell, John ;
Rodriguez, E. Rene ;
Rosengard, Bruce ;
Self, Sally ;
White-Williams, Connie ;
Zeevi, Adriana .
CIRCULATION, 2015, 131 (18) :1608-1639
[10]   The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients [J].
Costanzo, Maria Rosa ;
Dipchand, Anne ;
Starling, Randall ;
Anderson, Allen ;
Chan, Michael ;
Desai, Shashank ;
Fedson, Savitri ;
Fisher, Patrick ;
Gonzales-Stawinski, Gonzalo ;
Martinelli, Luigi ;
McGiffin, David ;
Parisi, Francesco ;
Smith, Jon ;
Taylor, David ;
Meiser, Bruno ;
Webber, Steven ;
Baran, David ;
Carboni, Michael ;
Dengler, Thomas ;
Feldman, David ;
Frigerio, Maria ;
Kfoury, Abdallah ;
Kim, Daniel ;
Kobashigawa, Jon ;
Shullo, Michael ;
Stehlik, Josef ;
Teuteberg, Jeffrey ;
Uber, Patricia ;
Zuckermann, Andreas ;
Hunt, Sharon ;
Burch, Michael ;
Bhat, Geetha ;
Canter, Charles ;
Chinnock, Richard ;
Crespo-Leiro, Marisa ;
Delgado, Reynolds ;
Dobbels, Fabienne ;
Grady, Kathleen ;
Kao, W. ;
Lamour, Jaqueline ;
Parry, Gareth ;
Patel, Jignesh ;
Pini, Daniela ;
Pinney, Sean ;
Towbin, Jeffrey ;
Wolfel, Gene ;
Delgado, Diego ;
Eisen, Howard ;
Goldberg, Lee ;
Hosenpud, Jeff .
JOURNAL OF HEART AND LUNG TRANSPLANTATION, 2010, 29 (08) :914-956