Radiomics and artificial intelligence for soft-tissue sarcomas: Current status and perspectives

被引:16
作者
Crombe, Amandine [1 ,2 ,3 ,4 ]
Spinnato, Paolo [5 ]
Italiano, Antoine [6 ]
Brise, Herve J. [7 ]
Feydy, Antoine [8 ,9 ]
Fadli, David [1 ]
Kind, Michele [2 ]
机构
[1] Pellegrin Univ Hosp, Dept Radiol, F-33000 Bordeaux, France
[2] Bergonie Inst, Dept Oncol Imaging, F-33076 Bordeaux, France
[3] Sarcotarget Team, BRIC, INSERM, U1312, F-33000 Bordeaux, France
[4] Bordeaux Univ, F-33000 Bordeaux, France
[5] IRCCS Ist Ortoped Rizzoli, Diagnost & Intervent Radiol, I-40136 Bologna, Italy
[6] Bergonie Inst, Sarcoma unit, F-33076 Bordeaux, France
[7] Inst Curie, Imaging Dept, F-75248 Paris, France
[8] Hop Cochin, Dept Radiol, AP HP, F-75014 Paris, France
[9] Univ Paris Cite, Fac Med, F-75006 Paris, France
关键词
Artificial intelligence; Magnetic resonance imaging; Radiomics; Soft-tissue sarcomas; Soft-tissue tumors; DIFFERENTIATE BENIGN; EXTERNAL VALIDATION; FEATURES; GRADE; DISTINGUISH; TEXTURE; PREDICT; METASTASES; LIPOMAS; GENOME;
D O I
10.1016/j.diii.2023.09.005
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This article proposes a summary of the current status of the research regarding the use of radiomics and artificial intelligence to improve the radiological assessment of patients with soft tissue sarcomas (STS), a heterogeneous group of rare and ubiquitous mesenchymal malignancies. After a first part explaining the principle of radiomics approaches, from raw image post-processing to extraction of radiomics features mined with unsupervised and supervised machine-learning algorithms, and the current research involving deep learning algorithms in STS, especially convolutional neural networks, this review details their main research developments since the formalisation of 'radiomics' in oncologic imaging in 2010. This review focuses on CT and MRI and does not involve ultrasonography. Radiomics and deep radiomics have been successfully applied to develop predictive models to discriminate between benign soft-tissue tumors and STS, to predict the histologic grade (i.e., the most important prognostic marker of STS), the response to neoadjuvant chemotherapy and/or radiotherapy, and the patients' survivals and probability for presenting distant metastases. The main findings, limitations and expectations are discussed for each of these outcomes. Overall, after a first decade of publications emphasizing the potential of radiomics through retrospective proof-of-concept studies, almost all positive but with heterogeneous and often non-replicable methods, radiomics is now at a turning point in order to provide robust demonstrations of its clinical impact through open-science, independent databases, and application of good and standardized practices in radiomics such as those provided by the Image Biomarker Standardization Initiative, without forgetting innovative research paths involving other '-omics' data to better understand the relationships between imaging of STS, gene-expression profiles and tumor microenvironment. (c) 2023 Societe francaise de radiologie. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:567 / 583
页数:17
相关论文
共 81 条
[1]   SMOTE for high-dimensional class-imbalanced data [J].
Blagus, Rok ;
Lusa, Lara .
BMC BIOINFORMATICS, 2013, 14
[2]   Artificial intelligence in diagnostic and interventional radiology: Where are we now? [J].
Boeken, Tom ;
Feydy, Jean ;
Lecler, Augustin ;
Soyer, Philippe ;
Feydy, Antoine ;
Barat, Maxime ;
Durona, Loic .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2023, 104 (01) :1-5
[3]   CHAIMELEON Project: Creation of a Pan-European Repository of Health Imaging Data for the Development of AI-Powered Cancer Management Tools [J].
Bonmati, Luis Marti ;
Miguel, Ana ;
Suarez, Amelia ;
Aznar, Mario ;
Beregi, Jean Paul ;
Fournier, Laure ;
Neri, Emanuele ;
Laghi, Andrea ;
Franca, Manuela ;
Sardanelli, Francesco ;
Penzkofer, Tobias ;
Lambin, Phillipe ;
Blanquer, Ignacio ;
Menzel, Marion I. ;
Seymour, Karine ;
Figueiras, Sergio ;
Krischak, Katharina ;
Martinez, Ricard ;
Mirsky, Yisroel ;
Yang, Guang ;
Alberich-Bayarri, Angel .
FRONTIERS IN ONCOLOGY, 2022, 12
[4]   Development and external validation of two nomograms to predict overall survival and occurrence of distant metastases in adults after surgical resection of localised soft-tissue sarcomas of the extremities: a retrospective analysis [J].
Callegaro, Dario ;
Miceli, Rosalba ;
Bonvalot, Sylvie ;
Ferguson, Peter ;
Strauss, Dirk C. ;
Levy, Antonin ;
Griffin, Anthony ;
Hayes, Andrew J. ;
Stacchiotti, Silvia ;
Le Pechoux, Cecile ;
Smith, Myles J. ;
Fiore, Marco ;
Dei Tos, Angelo P. ;
Smith, Henry G. ;
Mariani, Luigi ;
Wunder, Jay S. ;
Pollock, Raphael E. ;
Casali, Paolo G. ;
Gronchi, Alessandro .
LANCET ONCOLOGY, 2016, 17 (05) :671-680
[5]   Discrimination of lipoma from atypical lipomatous tumor/well-differentiated liposarcoma using magnetic resonance imaging radiomics combined with machine learning [J].
Cay, Nurdan ;
Mendi, Bokebatur Ahmet Rasit ;
Batur, Halitcan ;
Erdogan, Fazli .
JAPANESE JOURNAL OF RADIOLOGY, 2022, 40 (09) :951-960
[6]   Radiomics Analysis of Fat-Saturated T2-Weighted MRI Sequences for the Prediction of Prognosis in Soft Tissue Sarcoma of the Extremities and Trunk Treated With Neoadjuvant Radiotherapy [J].
Chen, Silin ;
Li, Ning ;
Tang, Yuan ;
Chen, Bo ;
Fang, Hui ;
Qi, Shunan ;
Lu, Ninging ;
Yang, Yong ;
Song, Yongwen ;
Liu, Yueping ;
Wang, Shulian ;
Li, Ye-Xiong ;
Jin, Jing .
FRONTIERS IN ONCOLOGY, 2021, 11
[7]   Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity [J].
Chibon, Frederic ;
Lagarde, Pauline ;
Salas, Sebastien ;
Perot, Gaelle ;
Brouste, Veronique ;
Tirode, Franck ;
Lucchesi, Carlo ;
de Reynies, Aurelien ;
Kauffmann, Audrey ;
Bui, Binh ;
Terrier, Philippe ;
Bonvalot, Sylvie ;
Le Cesne, Axel ;
Vince-Ranchere, Dominique ;
Blay, Jean-Yves ;
Collin, Francoise ;
Guillou, Louis ;
Leroux, Agnes ;
Coindre, Jean-Michel ;
Aurias, Alain .
NATURE MEDICINE, 2010, 16 (07) :781-U81
[8]   Prognostic factors in adult patients with locally controlled soft tissue sarcoma: A study of 546 patients from the French Federation of Cancer Centers Sarcoma Group [J].
Coindre, JM ;
Terrier, P ;
Bui, NB ;
Bonichon, F ;
Collin, F ;
LeDoussal, V ;
Mandard, AM ;
Vilain, MO ;
Jacquemier, J ;
Duplay, H ;
Sastre, X ;
Barlier, C ;
HenryAmar, M ;
Lesech, JM ;
Contesso, G .
JOURNAL OF CLINICAL ONCOLOGY, 1996, 14 (03) :869-877
[9]   Radiomic analysis of soft tissues sarcomas can distinguish intermediate from high-grade lesions [J].
Corino, Valentina D. A. ;
Montin, Eros ;
Messina, Antonella ;
Casali, Paolo G. ;
Gronchi, Alessandro ;
Marchiano, Alfonso ;
Mainardi, Luca T. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (03) :829-840
[10]   Soft tissue masses with myxoid stroma: Can conventional magnetic resonance imaging differentiate benign from malignant tumors? [J].
Crombe, A. ;
Alberti, N. ;
Stoeckle, E. ;
Brouste, V. ;
Buy, X. ;
Coindre, J-M. ;
Kind, M. .
EUROPEAN JOURNAL OF RADIOLOGY, 2016, 85 (10) :1875-1882