New Convergence Theorems for Pseudomonotone Variational Inequality on Hadamard Manifolds

被引:0
|
作者
Ma, Zhaoli [1 ,2 ]
Wang, Lin [3 ,4 ]
机构
[1] Yunnan Univ Finance & Econ, Coll Stat & Math, Kunming 650221, Peoples R China
[2] Yunnan Open Univ, Coll Publ Fdn, Kunming 650500, Peoples R China
[3] Yunnan Univ Finance & Econ, Yunnan Key Lab Serv Comp, Kunming 650221, Peoples R China
[4] Yunnan Univ Finance & Econ, Inst Intelligence Applicat, Kunming 650221, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 11期
基金
中国国家自然科学基金;
关键词
pseudomonotone mapping; variational inequality; Hadamard manifold; subgradient extragradient method; viscosity method; PROXIMAL POINT ALGORITHM; MONOTONE VECTOR-FIELDS; INCLUSION PROBLEMS; ITERATIVE ALGORITHMS; FIXED-POINTS; OPERATORS;
D O I
10.3390/sym15112085
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose an efficient viscosity type subgradient extragradient algorithm for solving pseudomonotone variational inequality on Hadamard manifolds which is of symmetrical characteristic. Under suitable conditions, we obtain the convergence of the iteration sequence generated by the proposed algorithm to a solution of a pseudomonotone variational inequality on Hadamard manifolds. We also employ our main result to solve a constrained convex minimization problem and present a numerical experiment to illustrate the asymptotic behavior of the algorithm. Our results develop and improve some recent results.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Iterative Algorithms for System of Variational Inclusions in Hadamard Manifolds
    Ansari, Qamrul Hasan
    Babu, Feeroz
    Sahu, D. R.
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (04) : 1333 - 1356
  • [42] Approximate proximal methods for variational inequalities on Hadamard manifolds
    Bento, G. C.
    Ferreira, O. P.
    Quiroz, E. A. Papa
    OPTIMIZATION, 2024,
  • [43] New strong convergence theorem of the inertial projection and contraction method for variational inequality problems
    Thong, Duong Viet
    Vinh, Nguyen The
    Cho, Yeol Je
    NUMERICAL ALGORITHMS, 2020, 84 (01) : 285 - 305
  • [44] Iterative Method with Inertia for Variational Inequalities on Hadamard Manifolds with Lower Bounded Curvature
    Yao, Teng-Teng
    Jin, Xiao-Qing
    Zhao, Zhi
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2024, 14 (01) : 195 - 222
  • [45] A projection algorithm for pseudomonotone vector fields with convex constraints on Hadamard manifolds
    Zhao, Zhi
    Zeng, Qin
    Xu, Yu-Nong
    Qian, Ya-Guan
    Yao, Teng-Teng
    NUMERICAL ALGORITHMS, 2023, 93 (03) : 1209 - 1223
  • [46] SECTION THEOREMS IN HADAMARD MANIFOLDS
    Huang, Shuechin
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2021, 22 (06) : 1189 - 1203
  • [47] CONVERGENCE THEOREMS FOR FIXED POINT PROBLEMS AND VARIATIONAL INEQUALITY PROBLEMS
    Yao, Yonghong
    Liou, Yeong-Cheng
    Chen, Rudong
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2008, 9 (02) : 239 - 248
  • [48] Variational inequalities on Hadamard manifolds
    Németh, SZ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (05) : 1491 - 1498
  • [49] Iterative algorithms for monotone variational inequality and fixed point problems on Hadamard manifolds
    Konrawut Khammahawong
    Parin Chaipunya
    Poom Kumam
    Advances in Operator Theory, 2022, 7
  • [50] Existence results for a class of hemivariational inequality problems on Hadamard manifolds
    Tang, Guo-ji
    Zhou, Li-wen
    Huang, Nan-jing
    OPTIMIZATION, 2016, 65 (07) : 1451 - 1461