New Convergence Theorems for Pseudomonotone Variational Inequality on Hadamard Manifolds

被引:0
|
作者
Ma, Zhaoli [1 ,2 ]
Wang, Lin [3 ,4 ]
机构
[1] Yunnan Univ Finance & Econ, Coll Stat & Math, Kunming 650221, Peoples R China
[2] Yunnan Open Univ, Coll Publ Fdn, Kunming 650500, Peoples R China
[3] Yunnan Univ Finance & Econ, Yunnan Key Lab Serv Comp, Kunming 650221, Peoples R China
[4] Yunnan Univ Finance & Econ, Inst Intelligence Applicat, Kunming 650221, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 11期
基金
中国国家自然科学基金;
关键词
pseudomonotone mapping; variational inequality; Hadamard manifold; subgradient extragradient method; viscosity method; PROXIMAL POINT ALGORITHM; MONOTONE VECTOR-FIELDS; INCLUSION PROBLEMS; ITERATIVE ALGORITHMS; FIXED-POINTS; OPERATORS;
D O I
10.3390/sym15112085
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose an efficient viscosity type subgradient extragradient algorithm for solving pseudomonotone variational inequality on Hadamard manifolds which is of symmetrical characteristic. Under suitable conditions, we obtain the convergence of the iteration sequence generated by the proposed algorithm to a solution of a pseudomonotone variational inequality on Hadamard manifolds. We also employ our main result to solve a constrained convex minimization problem and present a numerical experiment to illustrate the asymptotic behavior of the algorithm. Our results develop and improve some recent results.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] VISCOSITY METHOD WITH A φ-CONTRACTION MAPPING FOR HIERARCHICAL VARIATIONAL INEQUALITIES ON HADAMARD MANIFOLDS
    Al-Homidan, Suliman
    Ansari, Qamrul Hasan
    Babu, Feeroz
    Yao, Jen-Chih
    FIXED POINT THEORY, 2020, 21 (02): : 561 - 584
  • [22] Modified Halpern and viscosity methods for hierarchical variational inequalities on Hadamard manifolds
    Khammahawong, Konrawut
    Salisu, Sani
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01):
  • [23] Modified Tseng's extragradient methods for variational inequality on Hadamard manifolds
    Chen, Junfeng
    Liu, Sanyang
    Chang, Xiaokai
    APPLICABLE ANALYSIS, 2021, 100 (12) : 2627 - 2640
  • [24] VARIATIONAL INCLUSION PROBLEMS IN HADAMARD MANIFOLDS
    Ansari, Qamrul Hasan
    Babu, Feeroz
    Li, Xiao-Bo
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (02) : 219 - 237
  • [25] AN ACCELERATED SUBGRADIENT EXTRAGRADIENT ALGORITHM FOR STRONGLY PSEUDOMONOTONE VARIATIONAL INEQUALITY PROBLEMS
    Abubakar, Jamilu
    Sombut, Kamonrat
    Rehman, Habib Ur
    Ibrahim, Abdulkarim Hassan
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (01): : 166 - 187
  • [26] Convergence theorems of solutions of a generalized variational inequality
    Yu, Li
    Liang, Ma
    FIXED POINT THEORY AND APPLICATIONS, 2011,
  • [27] Convergence theorems of solutions of a generalized variational inequality
    Li Yu
    Ma Liang
    Fixed Point Theory and Applications, 2011
  • [28] Weak convergence theorems for a class of split variational inequality problems
    Sombut, Kamonrat
    Kitkuan, Duangkamon
    Padcharoen, Anantachai
    Kumam, Poom
    2018 INTERNATIONAL CONFERENCE ON CONTROL, ARTIFICIAL INTELLIGENCE, ROBOTICS & OPTIMIZATION (ICCAIRO), 2018, : 277 - 282
  • [29] STRONG CONVERGENCE RESULTS FOR VARIATIONAL INEQUALITY AND EQUILIBRIUM PROBLEM IN HADAMARD SPACES
    Ugwunnadi, G. C.
    Okeke, C. C.
    Khan, A. R.
    Jolaoso, L. O.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (06): : 825 - 845
  • [30] Weak sharpness and finite termination for variational inequalities on Hadamard manifolds
    Nguyen, Luong Van
    OPTIMIZATION, 2021, 70 (07) : 1443 - 1458