New Convergence Theorems for Pseudomonotone Variational Inequality on Hadamard Manifolds

被引:0
|
作者
Ma, Zhaoli [1 ,2 ]
Wang, Lin [3 ,4 ]
机构
[1] Yunnan Univ Finance & Econ, Coll Stat & Math, Kunming 650221, Peoples R China
[2] Yunnan Open Univ, Coll Publ Fdn, Kunming 650500, Peoples R China
[3] Yunnan Univ Finance & Econ, Yunnan Key Lab Serv Comp, Kunming 650221, Peoples R China
[4] Yunnan Univ Finance & Econ, Inst Intelligence Applicat, Kunming 650221, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 11期
基金
中国国家自然科学基金;
关键词
pseudomonotone mapping; variational inequality; Hadamard manifold; subgradient extragradient method; viscosity method; PROXIMAL POINT ALGORITHM; MONOTONE VECTOR-FIELDS; INCLUSION PROBLEMS; ITERATIVE ALGORITHMS; FIXED-POINTS; OPERATORS;
D O I
10.3390/sym15112085
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose an efficient viscosity type subgradient extragradient algorithm for solving pseudomonotone variational inequality on Hadamard manifolds which is of symmetrical characteristic. Under suitable conditions, we obtain the convergence of the iteration sequence generated by the proposed algorithm to a solution of a pseudomonotone variational inequality on Hadamard manifolds. We also employ our main result to solve a constrained convex minimization problem and present a numerical experiment to illustrate the asymptotic behavior of the algorithm. Our results develop and improve some recent results.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] New Tseng's extragradient methods for pseudomonotone variational inequality problems in Hadamard manifolds
    Khammahawong, Konrawut
    Kumam, Poom
    Chaipunya, Parin
    Plubtieng, Somyot
    FIXED POINT THEORY AND ALGORITHMS FOR SCIENCES AND ENGINEERING, 2021, 2021 (01):
  • [2] Tseng's extragradient algorithm for pseudomonotone variational inequalities on Hadamard manifolds
    Fan, Jingjing
    Qin, Xiaolong
    Tan, Bing
    APPLICABLE ANALYSIS, 2022, 101 (06) : 2372 - 2385
  • [3] The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds
    Tang, Guo-ji
    Zhou, Li-wen
    Huang, Nan-jing
    OPTIMIZATION LETTERS, 2013, 7 (04) : 779 - 790
  • [4] The proximal point algorithm for pseudomonotone variational inequalities on Hadamard manifolds
    Guo-ji Tang
    Li-wen Zhou
    Nan-jing Huang
    Optimization Letters, 2013, 7 : 779 - 790
  • [5] Variational inequalities governed by strongly pseudomonotone vector fields on Hadamard manifolds
    Luong Van Nguyen
    Nguyen Thi Thu
    Nguyen Thai An
    APPLICABLE ANALYSIS, 2023, 102 (02) : 444 - 467
  • [6] Korpelevich's method for variational inequality problems on Hadamard manifolds
    Tang, Guo-ji
    Huang, Nan-jing
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 54 (03) : 493 - 509
  • [7] Penalty function method for a variational inequality on Hadamard manifolds
    Kumari, Babli
    Ahmad, Izhar
    OPSEARCH, 2023, 60 (01) : 527 - 538
  • [8] An alternating inertial method for solving variational inequality problems on Hadamard manifolds
    Oyewole, Olawale K.
    Shehu, Yekini
    Reich, Simeon
    OPTIMIZATION, 2024,
  • [9] A new linear convergence method for a lipschitz pseudomonotone variational inequality
    Nwokoye R.N.
    Okeke C.C.
    Shehu Y.
    Applied Set-Valued Analysis and Optimization, 2021, 3 (02): : 215 - 220
  • [10] Regularization methods for hierarchical variational inequality problems on Hadamard manifolds
    Ansari, Qamrul Hasan
    Babu, Feeroz
    Uddin, Moin
    ARABIAN JOURNAL OF MATHEMATICS, 2023, 12 (02) : 309 - 330