Emerging strategies and developments in oxygen reduction reaction using high-performance platinum-based electrocatalysts

被引:14
作者
Ali, Asad [1 ]
Laaksonen, Aatto [1 ,2 ,3 ,4 ]
Huang, Guo [1 ]
Hussain, Shahid [1 ]
Luo, Shuiping [5 ]
Chen, Wen [5 ]
Shen, Pei Kang [6 ]
Zhu, Jinliang [6 ]
Ji, Xiaoyan [1 ]
机构
[1] Lulea Univ Technol, Div Energy Sci, Energy Engn, S-97187 Lulea, Sweden
[2] Stockholm Univ, Dept Mat & Environm Chem, Arrhenius Lab, SE-10691 Stockholm, Sweden
[3] Petru Poni Inst Macromol Chem, Ctr Adv Res Bionanoconjugates & Biopolymers, Iasi 700469, Romania
[4] Nanjing Tech Univ, State Key Lab Mat Oriented & Chem Engn, Nanjing 211816, Peoples R China
[5] Shenzhen Univ, Coll Mat Sci & Engn, Shenzhen 518060, Peoples R China
[6] Guangxi Univ, Sch Resources Environm & Mat, State Key Lab Proc Nonferrous Met & Featured Mat, Nanning 530004, Peoples R China
基金
瑞典研究理事会;
关键词
oxygen reduction reaction (ORR); Pt-based electrocatalysts; proton exchange membrane fuel cells (PEMFCs); morphology and alloys strategies; single atom electrocatalysts (SAEs); SULFUR-DOPED GRAPHENE; ONE-POT SYNTHESIS; CATALYTIC-ACTIVITY; EFFICIENT ELECTROCATALYSTS; ALLOY ELECTROCATALYSTS; SUPPORTED PLATINUM; LAYER DEPOSITION; FACILE SYNTHESIS; CARBON SUPPORT; PARTICLE-SIZE;
D O I
10.1007/s12274-023-6310-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The global practical implementation of proton exchange membrane fuel cells (PEMFCs) heavily relies on the advancement of highly effective platinum (Pt)-based electrocatalysts for the oxygen reduction reaction (ORR). To achieve high ORR performance, electrocatalysts with highly accessible reactive surfaces are needed to promote the uncovering of active positions for easy mass transportation. In this critical review, we introduce different approaches for the emerging development of effective ORR electrocatalysts, which offer high activity and durability. The strategies, including morphological engineering, geometric configuration modification via supporting materials, alloys regulation, core-shell, and confinement engineering of single atom electrocatalysts (SAEs), are discussed in line with the goals and requirements of ORR performance enhancement. We review the ongoing development of Pt electrocatalysts based on the syntheses, nanoarchitecture, electrochemical performances, and stability. We eventually explore the obstacles and research directions on further developing more effective electrocatalysts.
引用
收藏
页码:3516 / 3532
页数:17
相关论文
共 126 条
[1]   A Trimetallic Pt2NiCo/C Electrocatalyst with Enhanced Activity and Durability for Oxygen Reduction Reaction [J].
Alfaro-Lopez, Hilda M. ;
Valdes-Madrigal, Manuel A. ;
Rojas-Chavez, Hugo ;
Cruz-Martinez, Heriberto ;
Padilla-Islas, Miguel A. ;
Tellez-Cruz, Miriam M. ;
SolorSolorza-Feriaza, Omar .
CATALYSTS, 2020, 10 (02)
[2]   Recent Progress in Graphene-Based Nanostructured Electrocatalysts for Overall Water Splitting [J].
Ali, Asad ;
Shen, Pei Kang .
ELECTROCHEMICAL ENERGY REVIEWS, 2020, 3 (02) :370-394
[3]   Nonprecious metal's graphene-supported electrocatalysts for hydrogen evolution reaction: Fundamentals to applications [J].
Ali, Asad ;
Shen, Pei Kang .
CARBON ENERGY, 2020, 2 (01) :99-121
[4]   Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction [J].
Ali, Asad ;
Shen, Pei Kang .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (39) :22189-22217
[5]   A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells [J].
Banham, Dustin ;
Ye, Siyu ;
Pei, Katie ;
Ozaki, Jun-ichi ;
Kishimoto, Takeaki ;
Imashiro, Yasuo .
JOURNAL OF POWER SOURCES, 2015, 285 :334-348
[6]   Enhanced Electrocatalytic Activity toward the Oxygen Reduction Reaction through Alloy Formation: Platinum-Silver Alloy Nanocages [J].
Bordley, Justin A. ;
El-Sayed, Mostafa A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (27) :14643-14651
[7]   One step forward to a scalable synthesis of platinum-yttrium alloy nanoparticles on mesoporous carbon for the oxygen reduction reaction [J].
Brandiele, R. ;
Durante, C. ;
Gradzka, E. ;
Rizzi, G. A. ;
Zheng, J. ;
Badocco, D. ;
Centomo, P. ;
Pastore, P. ;
Granozzi, G. ;
Gennaro, A. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (31) :12232-12240
[8]   Unraveling the Surface Chemistry and Structure in Highly Active Sputtered Pt3Y Catalyst Films for the Oxygen Reduction Reaction [J].
Brown, Rosemary ;
Vorokhta, Mykhailo ;
Khalakhan, Ivan ;
Dopita, Milan ;
Vonderach, Thomas ;
Skala, Tomas ;
Lindahl, Niklas ;
Matolinova, Iva ;
Gronbeck, Henrik ;
Neyman, Konstantin M. ;
Matolin, Vladimir ;
Wickman, Bjorn .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (04) :4454-4462
[9]   Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis [J].
Bu, Lingzheng ;
Zhang, Nan ;
Guo, Shaojun ;
Zhang, Xu ;
Li, Jing ;
Yao, Jianlin ;
Wu, Tao ;
Lu, Gang ;
Ma, Jing-Yuan ;
Su, Dong ;
Huang, Xiaoqing .
SCIENCE, 2016, 354 (6318) :1410-1414
[10]   Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis [J].
Bu, Lingzheng ;
Guo, Shaojun ;
Zhang, Xu ;
Shen, Xuan ;
Su, Dong ;
Lu, Gang ;
Zhu, Xing ;
Yao, Jianlin ;
Guo, Jun ;
Huang, Xiaoqing .
NATURE COMMUNICATIONS, 2016, 7