A software framework for end-to-end genomic sequence analysis with deep learning

被引:0
作者
Klie, Adam [1 ]
Carter, Hannah [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
来源
NATURE COMPUTATIONAL SCIENCE | 2023年 / 3卷 / 11期
关键词
Compendex;
D O I
10.1038/s43588-023-00557-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Using deep learning methods to study gene regulation has become popular, but designing accessible and customizable software for this purpose remains a challenge. This work introduces a computational toolkit called EUGENe that facilitates the development of end-to-end deep learning workflows in regulatory genomics.
引用
收藏
页码:920 / 921
页数:2
相关论文
empty
未找到相关数据