A software framework for end-to-end genomic sequence analysis with deep learning
被引:0
作者:
Klie, Adam
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, La Jolla, CA 92093 USAUniv Calif San Diego, La Jolla, CA 92093 USA
Klie, Adam
[1
]
Carter, Hannah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, La Jolla, CA 92093 USAUniv Calif San Diego, La Jolla, CA 92093 USA
Carter, Hannah
[1
]
机构:
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
来源:
NATURE COMPUTATIONAL SCIENCE
|
2023年
/
3卷
/
11期
关键词:
Compendex;
D O I:
10.1038/s43588-023-00557-5
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
Using deep learning methods to study gene regulation has become popular, but designing accessible and customizable software for this purpose remains a challenge. This work introduces a computational toolkit called EUGENe that facilitates the development of end-to-end deep learning workflows in regulatory genomics.