The Isomorphism Problem of Normalized Unit Groups of Group Algebras of a Class of Finite 2-groups

被引:0
作者
Wang, Yu Lei [1 ]
Liu, He Guo [2 ]
机构
[1] Henan Univ Technol, Dept Math, Zhengzhou 450001, Peoples R China
[2] Hainan Univ, Dept Math, Haikou 570228, Peoples R China
基金
中国国家自然科学基金;
关键词
isomorphism problem; normalized unit; Frattini subgroup; finite; 2-group; MODULAR GROUP-ALGEBRAS;
D O I
10.1007/s10114-023-2261-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a prime and F-p be a finite field of p elements. Let F(p)G denote the group algebra of the finite p-group G over the field F-p and V (F(p)G) denote the group of normalized units in F(p)G. Suppose that G and H are finite p-groups given by a central extension of the form 1 -> Z(pm) -> G -> Z(p) x ... x Z(p) -> 1 and G' congruent to Z(p), m >= 1. Then V (F(p)G) congruent to V (FpH) if and only if G congruent to H. Balogh and Bovdi only solved the isomorphism problem when p is odd. In this paper, the case p = 2 is determined.
引用
收藏
页码:2275 / 2282
页数:8
相关论文
共 17 条
[2]   THE MODULAR GROUP-ALGEBRAS OF P-GROUPS OF MAXIMAL CLASS [J].
BAGINSKI, C ;
CARANTI, A .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1988, 40 (06) :1422-1435
[3]   MODULAR GROUP-ALGEBRAS OF 2-GROUPS OF MAXIMAL CLASS [J].
BAGINSKI, C .
COMMUNICATIONS IN ALGEBRA, 1992, 20 (05) :1229-1241
[4]  
Baginski C., 1999, COLLOQ MATH-WARSAW, V82, P125, DOI DOI 10.4064/CM-82-1-125-136
[5]  
Balogh Z, 2004, PUBL MATH DEBRECEN, V65, P261
[6]   On units of group algebras of 2-groups of maximal class [J].
Balogh, Z ;
Bovdi, A .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (08) :3227-3245
[7]   The isomorphism problem of unitary subgroups of modular group algebras [J].
Balogh, Zsolt ;
Bovdi, Victor .
PUBLICATIONES MATHEMATICAE-DEBRECEN, 2020, 97 (1-2) :27-39
[8]  
Berman S. D., 1967, PUBL MATH-DEBRECEN, V14, P365, DOI DOI 10.5486/PMD.1967.14.1-4.40
[9]  
Bornand D., 2009, Elementary abelian subgroups in p -groups of class 2
[10]  
Brauer R, 1956, MATH Z, V63, P406, DOI 10.1007/BF01187950