Weakly invariant norms: Geometry of spheres in the space of skew-Hermitian matrices

被引:0
作者
Larotonda, Gabriel [1 ]
Rey, Ivan
机构
[1] Univ Buenos Aires, Dept Matemat, FCEyN UBA, Buenos Aires, Argentina
关键词
Adjoint action; Convex set; Finsler norm; Majorization; Norming functional; Polytope; Skew-Hermitian matrix; Supporting hyperplane; Unitarily invariant norm; Weakly invariant norm; FINSLER GEOMETRY; ISOMETRIES;
D O I
10.1016/j.laa.2023.08.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let N be a weakly unitarily invariant norm (i.e. invariant for the coadjoint action of the unitary group) in the space of skew-Hermitian matrices un(C). In this paper we study the geometry of the unit sphere of such a norm, and we show how its geometric properties are encoded by the majorization properties of the eigenvalues of the matrices. We give a detailed characterization of norming functionals of elements for a given norm, and we then prove a sharp criterion for the commutator [X, [X, V]] to be in the hyperplane that supports V in the unit sphere. We show that the adjoint action V -> V + [X, V] of un(C) on itself pushes vectors away from the unit sphere. As an application of the previous results, for a strictly convex norm, we prove that the norm is preserved by this last action if and only if X commutes with V. We give a more detailed description in the case of any weakly Ad-invariant norm.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:136 / 168
页数:33
相关论文
共 31 条
  • [21] Larotonda G., 2018, Math. Proc. R. Irish Acad, V118A, P1, DOI [10.1353/mpr.2018.0005, DOI 10.1353/MPR.2018.0005]
  • [22] Norm inequalities in operator ideals
    Larotonda, Gabriel
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (11) : 3208 - 3228
  • [23] Hofer's metric in compact Lie groups
    Larotonda, Gabriel
    Miglioli, Martin
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2023, 17 (03) : 839 - 898
  • [24] Metric geometry of infinite-dimensional Lie groups and their homogeneous spaces
    Larotonda, Gabriel
    [J]. FORUM MATHEMATICUM, 2019, 31 (06) : 1567 - 1605
  • [25] Munoz GA, 1999, STUD MATH, V134, P1
  • [26] Nielsen M. A., 2000, QUANTUM COMPUTATION
  • [27] Pazy A., 2012, Applied Mathematical Sciences, V44
  • [28] Just relax: Convex programming methods for identifying sparse signals in noise
    Tropp, JA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (03) : 1030 - 1051
  • [29] Watson G.A., 1992, NUMER ALGORITHMS, V2, P321, DOI DOI 10.1007/BF02139472
  • [30] Watson GA., 1993, NUMER ALGORITHMS, V5, P263, DOI DOI 10.1007/BF02210386