Statistical Analysis of Random Objects Via Metric Measure Laplacians

被引:0
作者
Mordant, Gilles [1 ]
Munk, Axel [1 ,2 ,3 ]
机构
[1] Univ Gottingen, Inst Math Stochast, D-37077 Gottingen, Germany
[2] Univ Med Ctr, Max Planck Inst Multidisciplinary Sci, D-37077 Gottingen, Germany
[3] Univ Med Ctr, DFG Cluster Excellence Multiscale Bioimaging Mol, D-37077 Gottingen, Germany
来源
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE | 2023年 / 5卷 / 02期
关键词
spectral analysis; metric measure space; Laplace operator; harmonic function; empirical process; CONCENTRATION INEQUALITIES; MEASURE-SPACES; GRAPHS;
D O I
10.1137/22M1491022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a certain convolutional Laplacian for metric measure spaces and investigate its potential for the statistical analysis of complex objects. The spectrum of that Laplacian serves as a signature of the space under consideration and the eigenvectors provide the principal directions of the shape, its harmonics. These concepts are used to assess the similarity of objects or understand their most important features in a principled way which is illustrated in various examples. Adopting a statistical point of view, we define a mean spectral measure and its empirical counterpart. The corresponding limiting process of interest is derived and statistical applications are discussed.
引用
收藏
页码:528 / 557
页数:30
相关论文
共 64 条
[1]   Fast molecular shape matching using contact maps [J].
Agarwal, Pankaj K. ;
Mustafa, Nabil H. ;
Wang, Yusu .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2007, 14 (02) :131-143
[2]   Theoretical guarantees for bridging metric measure embedding and optimal transport [J].
Alaya, Mokhtar Z. ;
Berar, Maxime ;
Gasso, Gilles ;
Rakotomamonjy, Alain .
NEUROCOMPUTING, 2022, 468 :416-430
[3]   DTM-Based Filtrations [J].
Anai, Hirokazu ;
Chazal, Frederic ;
Glisse, Marc ;
Ike, Yuichi ;
Inakoshi, Hiroya ;
Tinarrage, Raphael ;
Umeda, Yuhei .
TOPOLOGICAL DATA ANALYSIS, ABEL SYMPOSIUM 2018, 2020, 15 :33-66
[4]  
Berman A, 2011, ELECTRON J LINEAR AL, V22, P1179
[5]  
Bousquet O, 2004, ADV NEUR IN, V16, P1221
[6]  
Bousquet O, 2003, PROG PROBAB, V56, P213
[7]   A statistical test of isomorphism between metric-measure spaces using the distance-to-a-measure signature [J].
Brecheteau, Claire .
ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01) :795-849
[8]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[9]  
Burago D., 2022, Grad. Stud. Math., V33
[10]   Spectral stability of metric-measure Laplacians [J].
Burago, Dmitri ;
Ivanov, Sergei ;
Kurylev, Yaroslav .
ISRAEL JOURNAL OF MATHEMATICS, 2019, 232 (01) :125-158