Dynamics and optical solitons in polarization-preserving fibers for the cubic-quartic complex Ginzburg-Landau equation with quadratic-cubic law nonlinearity

被引:6
作者
Peng, Chen [1 ,2 ]
Li, Zhao [1 ]
机构
[1] Chengdu Univ, Coll Comp Sci, Chengdu 610106, Peoples R China
[2] Sichuan Normal Univ, VC & VR Key Lab Sichuan Prov, Chengdu 610068, Peoples R China
关键词
Complex Ginzburg-Landau equation; Bifurcation; Solition solutions; Trial function method; PORSEZIAN-DANIEL EQUATION; POWER-LAW; PERTURBATION; MODEL; DISPERSION; KERR;
D O I
10.1016/j.rinp.2023.106615
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, the cubic-quartic complex Ginzburg-Landau (CGL) equation is investigated by using the trial function method. The traveling wave hypothesis is applied to convert the CGL equation to an ordinary differential equation (ODE), which is equivalent to a dynamic system. The qualitative behavior, bifurcation of the phase portraits for this system is studied. Furthermore, the chaotic motions in system involving external periodic perturbation are considered. Some new optical solitons, such as Jacobian elliptic function solutions, for CGL equation with quadratic-cubic law nonlinearity are constructed using the complete discrimination system for polynomial method. Moreover, two-dimensional graphs, three-dimensional, corresponding contour and density plots for some acquired solutions are depicted to carry out the physical properties of optical pulse propagation.
引用
收藏
页数:7
相关论文
共 42 条
  • [1] Stationary optical solitons with nonlinear chromatic dispersion for Lakshmanan-Porsezian-Daniel model having Kerr law of nonlinear refractive index
    Adem, Abdullahi Rashid
    Ntsime, Basetsana Pauline
    Biswas, Anjan
    Khan, Salam
    Alzahrani, Abdullah Khamis
    Belic, Milivoj R.
    [J]. UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2021, 22 (02) : 83 - 86
  • [2] Application of the first integral method for solving (1+1) dimensional cubic-quintic complex Ginzburg-Landau equation
    Akram, Ghazala
    Mahak, Nadia
    [J]. OPTIK, 2018, 164 : 210 - 217
  • [3] Dark and singular cubic-quartic optical solitons with Lakshmanan-Porsezian-Daniel equation by the improved Adomian decomposition scheme
    Al Qarni, A. A.
    Bodaqah, A. M.
    Mohammed, A. S. H. F.
    Alshaery, A. A.
    Bakodah, H. O.
    Biswas, A.
    [J]. UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2023, 24 (01) : 46 - 61
  • [4] Cubic-quartic optical solitons for Lakshmanan-Porsezian-Daniel equation by the improved Adomian decomposition scheme
    Al Qarni, A. A.
    Bodaqah, A. M.
    Mohammed, A. S. H. F.
    Alshaery, A. A.
    Bakodah, H. O.
    Biswas, Anjan
    [J]. UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2022, 23 (04) : 228 - 242
  • [5] Arnous AH, 2023, UKR J PHYS OPT, V24, P105
  • [6] Cubic-quartic optical soliton perturbation with complex Ginzburg-Landau equation by the enhanced Kudryashov's method
    Arnous, Ahmed H.
    Biswas, Anjan
    Yildirim, Yakup
    Zhou, Qin
    Liu, Wenjun
    Alshomrani, Ali S.
    Alshehri, Hashim M.
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 155
  • [7] Cubic-quartic optical soliton perturbation with Fokas-Lenells equation by semi-inverse variation
    Biswas, A.
    Dakova, A.
    Khan, S.
    Ekici, M.
    Moraru, L.
    Belic, M. R.
    [J]. SEMICONDUCTOR PHYSICS QUANTUM ELECTRONICS & OPTOELECTRONICS, 2021, 24 (04) : 431 - 435
  • [8] Biswas A, 2010, NONLINEAR PHYS SCI, P1, DOI 10.1007/978-3-642-10220-2
  • [9] Biswas A., 2006, Introduction to Non-Kerr Law Optical solitons
  • [10] Cubic-quartic optical soliton perturbation with Lakshmanan-Porsezian-Daniel model by semi-inverse variational principle
    Biswas, Anjan
    Edoki, Joseph
    Guggilla, Padmaja
    Khan, Salam
    Alzahrani, Abdullah Khamis
    Belic, Milivoj R.
    [J]. UKRAINIAN JOURNAL OF PHYSICAL OPTICS, 2021, 22 (03) : 123 - 127