A Hybrid Siamese Network With Spatiotemporal Enhancement and Two-Level Feature Fusion for Remote Sensing Image Change Detection

被引:11
|
作者
Yan, Liangliang [1 ]
Jiang, Jie [1 ]
机构
[1] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Instrumentat & Optoelect Engn, Key Lab Precis Opto Mechatron Technol,Minist Educ, Beijing 100191, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Task analysis; Spatiotemporal phenomena; Semantics; Decoding; Context modeling; Computational modeling; Change detection (CD); hybrid Siamese backbone; spatiotemporal enhancement module (STEM); two-level feature fusion module (TL-FFM); UNSUPERVISED CHANGE DETECTION; BUILDING CHANGE DETECTION; COVER CHANGE; LANDSAT; MAD;
D O I
10.1109/TGRS.2023.3268294
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
With the popularization and development of deep learning (DL) technology, remote sensing (RS) image change detection (CD) has achieved remarkable success. However, an accurate CD has still been challenging due to the difficulties in achieving efficient feature extraction and effective difference feature enhancement and refinement. To address these limitations, this article proposes a hybrid Siamese network with spatiotemporal enhancement and two-level feature fusion (named the HSSENet) for CD. First, an efficient hybrid Siamese backbone is designed by combining a transformer's advantage to capture dense dependencies between features and convolutional neural network (CNN)'s advantage to provide local prior knowledge. In addition, to reduce irrelevant pseudo-changes and high-frequency noise while maintaining the high compactness of changed targets, a spatiotemporal enhancement module (STEM) that adopts the self-attention mechanism for context modeling in spatiotemporal dimensions and can separately process low and high frequencies is proposed for effective difference feature enhancement. Finally, three two-level feature fusion modules (TL-FFMs) are designed instead of standard decoders to aggregate low-level details and high-level semantics for refining the boundary information. The proposed HSSENet is verified by experiments, and the experimental results demonstrate that it can obtain a better tradeoff between accuracy and efficiency than the state-of-the-art methods and significantly outperforms them with the F1-score of 91.48/91.55/91.17 points on the learning, vision, and RS (LEVIR)/Wuhan University (WHU)/deeply supervised image fusion network (DSIFN) test sets, respectively.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Two-Level Feature Fusion Network for Remote Sensing Image Change Detection
    Feng, Mingyao
    Zhang, Ruifan
    Wang, Hao
    Liu, Yikun
    Yang, Gongping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 8477 - 8489
  • [2] A Full-Scale Feature Fusion Siamese Network for Remote Sensing Change Detection
    Zhou, Huaping
    Song, Minglong
    Sun, Kelei
    ELECTRONICS, 2023, 12 (01)
  • [3] Spatiotemporal Enhancement and Interlevel Fusion Network for Remote Sensing Images Change Detection
    Huang, Yanyuan
    Li, Xinghua
    Du, Zhengshun
    Shen, Huanfeng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [4] Adaptive Differentiation Siamese Fusion Network for Remote Sensing Change Detection
    Zhang, Yunzuo
    Zhen, Jiawen
    Liu, Ting
    Yang, Yuehui
    Cheng, Yu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [5] Boundary Extraction Constrained Siamese Network for Remote Sensing Image Change Detection
    Lei, Jie
    Gu, Yijie
    Xie, Weiying
    Li, Yunsong
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Siamese Attentive Convolutional Network for Effective Remote Sensing Image Change Detection
    Wan, Zifu
    Yan, Tianyu
    2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 167 - 176
  • [7] CLHF-Net: A Channel-Level Hierarchical Feature Fusion Network for Remote Sensing Image Change Detection
    Ma, Jinming
    Lu, Di
    Li, Yanxiang
    Shi, Gang
    SYMMETRY-BASEL, 2022, 14 (06):
  • [8] Remote Sensing Image Change Detection Based on Multi-Level Diversity Feature Fusion
    Xie, Honggang
    Ma, Wanjie
    IEEE ACCESS, 2024, 12 : 81495 - 81505
  • [9] Multi-scale feature progressive fusion network for remote sensing image change detection
    Lu, Di
    Cheng, Shuli
    Wang, Liejun
    Song, Shiji
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [10] EDGE-GUIDED FEATURE DENSE FUSION NETWORK FOR REMOTE SENSING IMAGE CHANGE DETECTION
    Luo, Hejun
    Liu, Jia
    Liu, Fang
    Zhang, Wenhua
    Yang, Jingxiang
    Xiao, Liang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6684 - 6687