SOME NEW NUMERICAL RADIUS AND HILBERT-SCHMIDT NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS

被引:3
作者
Yang, Chaojun [1 ]
Xu, Minghua [1 ]
机构
[1] Changzhou Univ, Dept Math, Changzhou 213000, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2023年 / 17卷 / 01期
基金
中国博士后科学基金;
关键词
Numerical radius; Hilbert-Schmidt numerical radius; function; Cartesian de-composition; NORM INEQUALITIES; BOUNDS;
D O I
10.7153/jmi-2023-17-19
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we give new upper and lower bounds of numerical radius and Hilbert-Schmidt numerical radius inequalities for Hilbert space operators. In particular, we show that if X is an element of C-2 with the Cartesian decomposition X = A+ iB, then 1/4 parallel to|X|(2) +|X*|(2)parallel to(2) <= 1/root 2 omega(2) ([(B2) (0) (0) (A2)]) <= omega(2)(2) (X). This is an analog of Kittaneh in [Studia Math. 168 (2005): 73-80].
引用
收藏
页码:269 / 282
页数:14
相关论文
共 22 条
[1]  
Abbas H, 2020, Arxiv, DOI arXiv:2004.09955
[2]   Convexity and Inequalities of Some Generalized Numerical Radius Functions [J].
Abbas, Hassane ;
Harb, Sadeem ;
Issa, Hassan .
FILOMAT, 2022, 36 (05) :1649-1662
[3]   UPPER AND LOWER BOUNDS FOR THE NUMERICAL RADIUS WITH AN APPLICATION TO INVOLUTION OPERATORS [J].
Abu-Omar, Amer ;
Kittaneh, Fuad .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2015, 45 (04) :1055-1065
[4]   Hilbert-Schmidt numerical radius inequalities for operator matrices [J].
Aldalabih, Alaa ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 581 :72-84
[5]   FURTHER NUMERICAL RADIUS INEQUALITIES [J].
Alomari, Mohammad W. ;
Sahoo, Satyajit ;
Bakherad, Mojtaba .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (01) :307-308
[6]  
Audeh W, 2021, INT J MATH COMPUT SC, V16, P1161
[7]   Refined and generalized numerical radius inequalities for 2 x 2 operator matrices [J].
Bani-Domi, Watheq ;
Kittaneh, Fuad .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 624 (624) :364-386
[8]   Norm inequalities for positive operators [J].
Bhatia, R ;
Kittaneh, F .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 43 (03) :225-231
[9]  
Buzano ML, 1971, REND SEM MAT U POLIT, V31, P405
[10]   Hermite-Hadamard's type inequalities for operator convex functions [J].
Dragomir, S. S. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (03) :766-772