Taylor collocation method for solving two-dimensional partial Volterra integro-differential equations

被引:2
作者
Khennaoui, Cheima [1 ,2 ]
Bellour, Azzeddine [2 ]
Laib, Hafida [1 ]
机构
[1] Ctr Univ Abdelhafid Boussouf Mila, Inst Sci & Technol, Mila, Algeria
[2] Ecole Normale Super Constantine, Lab Appl Math & Didact, Constantine, Algeria
关键词
collocation method; partial Volterra integro-differential equation; Taylor polynomials; two-dimensional equations; NUMERICAL-SOLUTION; OPERATIONAL MATRIX; ALGORITHM;
D O I
10.1002/mma.9209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the numerical solution of a two-dimensional partial Volterra integro-differential equation (2D-PVIDE) is provided by extending the Taylor collocation scheme of one-dimensional Volterra integral equations. The method is based on the use of Taylor polynomials in two-dimensional, while the approximate solution is given by using explicit schemes. The method is proved to be high-order convergent with respect to the maximum norm. Some numerical examples are given to verify the theoretical results.
引用
收藏
页码:12735 / 12758
页数:24
相关论文
共 36 条
[1]   A NONLINEAR PARTIAL INTEGRO-DIFFERENTIAL EQUATION FROM MATHEMATICAL FINANCE [J].
Abergel, Frederic ;
Tachet, Remi .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (03) :907-917
[2]   Spectral Galerkin schemes for a class of multi-order fractional pantograph equations [J].
Alsuyuti, M. M. ;
Doha, E. H. ;
Ezz-Eldien, S. S. ;
Youssef, I. K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 384
[3]   Modified Galerkin algorithm for solving multitype fractional differential equations [J].
Alsuyuti, Muhammad M. ;
Doha, Eid H. ;
Ezz-Eldien, Samer S. ;
Bayoumi, Bayoumi I. ;
Baleanu, Dumitru .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (05) :1389-1412
[4]   Abundant closed-form solitons for time-fractional integro-differential equation in fluid dynamics [J].
Az-Zo'bi, Emad A. ;
AlZoubi, Wael A. ;
Akinyemi, Lanre ;
Senol, Mehmet ;
Alsaraireh, Islam W. ;
Mamat, Mustafa .
OPTICAL AND QUANTUM ELECTRONICS, 2021, 53 (03)
[5]   Numerical Solution of Diffusion and Reaction-Diffusion Partial Integro-Differential Equations [J].
Aziz, Imran ;
Khan, Imran .
INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2018, 15 (06)
[6]   Numerical solutions of nonlinear two-dimensional partial Volterra integro-differential equations by Haar wavelet [J].
Babaaghaie, A. ;
Maleknejad, K. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 :643-651
[7]   Solution of High-Order Linear Fredholm Integro-Differential Equations with Piecewise Intervals [J].
Baykus, Nurcan ;
Sezer, Mehmet .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (05) :1327-1339
[8]   Numerical solution of delay integro-differential equations by using Taylor collocation method [J].
Bellour, Azzeddine ;
Bousselsal, Mahmoud .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (10) :1491-1506
[9]   A Taylor collocation method for solving delay integral equations [J].
Bellour, Azzeddine ;
Bousselsal, Mahmoud .
NUMERICAL ALGORITHMS, 2014, 65 (04) :843-857
[10]   Projected Iterations of Fixed-Point Type to Solve Nonlinear Partial Volterra Integro-Differential Equations [J].
Berenguer, M., I ;
Gamez, D. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) :4431-4442