On Convergence Rate Bounds for a Class of Nonlinear Markov Chains

被引:0
作者
Shchegolev, A. A. [1 ]
Veretennikov, A. Yu. [2 ]
机构
[1] HSE Univ, Moscow, Russia
[2] Inst Informat Transmiss Problems, Moscow, Russia
关键词
nonlinear Markov chains; uniform ergodicity; convergence rate; Markovian coupling; spectral radius; extreme values;
D O I
10.61102/1024-2953-mprf.2023.29.5.001
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new approach is developed for evaluating the convergence rate for nonlinear Markov chains (MC) based on the recently developed spectral radius technique of Markovian coupling for linear MC and the idea of small nonlinear perturbations of linear MC. The method further enhances recent advances in the problem of convergence for such models.
引用
收藏
页码:619 / 639
页数:110
相关论文
共 11 条
[1]   ON ERGODIC PROPERTIES OF NONLINEAR MARKOV CHAINS AND STOCHASTIC MCKEAN-VLASOV EQUATIONS [J].
Butkovsky, O. A. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2014, 58 (04) :661-674
[2]   On asymptotics for Vaserstein coupling of Markov chains [J].
Butkovsky, O. A. ;
Veretennikov, A. Yu .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (09) :3518-3541
[3]   On the convergence of nonlinear Markov chains [J].
Butkovsky, O. A. .
DOKLADY MATHEMATICS, 2012, 86 (03) :824-826
[4]   SUBGEOMETRIC RATES OF CONVERGENCE OF MARKOV PROCESSES IN THE WASSERSTEIN METRIC [J].
Butkovsky, Oleg .
ANNALS OF APPLIED PROBABILITY, 2014, 24 (02) :526-552
[5]  
Iosifescu M., 1990, Dependence with complete connections and its applications
[6]  
Kolokoltsov V. N ..., 2010, Nonlinear Markov processes and kinetic equations, V182, DOI [10.1017/CBO9780511760303, DOI 10.1017/CBO9780511760303]
[7]  
[Щеголев Александр Алексеевич Schegolev Alexander Alexeevich], 2021, [Управление большими системами: сборник трудов, Large-Scale Systems Control, Upravlenie bol'shimi sistemami: sbornik trudov], P36, DOI 10.25728/ubs.2021.90.2
[8]   A new rate of convergence estimate for homogeneous discrete-time nonlinear Markov chains [J].
Shchegolev, Aleksandr A. .
RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2022, 30 (03) :205-213
[9]  
Shchegolev A, 2022, Arxiv, DOI arXiv:2209.12834
[10]   On improved bounds and conditions for the convergence of Markov chains [J].
Veretennikov, A. Yu. ;
Veretennikova, M. A. .
IZVESTIYA MATHEMATICS, 2022, 86 (01) :92-125