Dual Attention Feature Fusion for Visible-Infrared Object Detection

被引:1
作者
Hu, Yuxuan [1 ,2 ]
Shi, Limin [3 ]
Yao, Libo [4 ]
Weng, Lubin [3 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Res Ctr Aerosp Informat, Beijing, Peoples R China
[4] Naval Aviat Univ, Inst Informat Fus, Yantai, Peoples R China
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VII | 2023年 / 14260卷
基金
中国国家自然科学基金;
关键词
Feature fusion; Visible-infrared; Object detection;
D O I
10.1007/978-3-031-44195-0_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature fusion is an essential component of multimodal object detection to exploit the complementary information and common information between multi-source images. When it comes to visible-infrared image pairs, however, the visible images are prone to illumination and visibility and there may be a lot of interference information and little useful information. We suggest performing common feature enhancement and spatial cross attention sequentially to solve this problem. For this purpose, a novel Dual Attention Transformer Feature Fusion (DATFF) module which is designed for feature fusion of intermediate feature maps is proposed. We integrate it into two-stream object detectors and achieve state-of-the-art performance on DroneVehicle and FLIR visible-infrared object detection datasets. Our code is available at https://github.com/a21401624/DATFF.
引用
收藏
页码:53 / 65
页数:13
相关论文
共 26 条
  • [11] Liu J., 2016, P BRIT MACH VIS C BM, DOI DOI 10.5244/C.30.73
  • [12] Deep Cross-Modal Representation Learning and Distillation for Illumination-Invariant Pedestrian Detection
    Liu, Tianshan
    Lam, Kin-Man
    Zhao, Rui
    Qiu, Guoping
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (01) : 315 - 329
  • [13] SSD: Single Shot MultiBox Detector
    Liu, Wei
    Anguelov, Dragomir
    Erhan, Dumitru
    Szegedy, Christian
    Reed, Scott
    Fu, Cheng-Yang
    Berg, Alexander C.
    [J]. COMPUTER VISION - ECCV 2016, PT I, 2016, 9905 : 21 - 37
  • [14] Vehicle detection in aerial imagery : A small target detection benchmark
    Razakarivony, Sebastien
    Jurie, Frederic
    [J]. JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 34 : 187 - 203
  • [15] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
    Ren, Shaoqing
    He, Kaiming
    Girshick, Ross
    Sun, Jian
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (06) : 1137 - 1149
  • [16] YOLOrs: Object Detection in Multimodal Remote Sensing Imagery
    Sharma, Manish
    Dhanaraj, Mayur
    Karnam, Srivallabha
    Chachlakis, Dimitris G.
    Ptucha, Raymond
    Markopoulos, Panos P.
    Saber, Eli
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 1497 - 1508
  • [17] Drone-Based RGB-Infrared Cross-Modality Vehicle Detection Via Uncertainty-Aware Learning
    Sun, Yiming
    Cao, Bing
    Zhu, Pengfei
    Hu, Qinghua
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6700 - 6713
  • [18] Vaswani A, 2017, ADV NEUR IN, V30
  • [19] Oriented R-CNN for Object Detection
    Xie, Xingxing
    Cheng, Gong
    Wang, Jiabao
    Yao, Xiwen
    Han, Junwei
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3500 - 3509
  • [20] Yang X, 2021, AAAI CONF ARTIF INTE, V35, P3163