Techno-economic comparison of different energy storage configurations for renewable energy combined cooling heating and power system

被引:29
|
作者
Huang, Z. F. [1 ]
Chen, W. D. [1 ]
Wan, Y. D. [2 ]
Shao, Y. L. [3 ]
Islam, M. R. [1 ]
Chua, K. J. [1 ]
机构
[1] Natl Univ Singapore, Dept Mech Engn, 9 Engn Dr 1, Singapore 117575, Singapore
[2] Cent South Univ Forestry & Technol, Coll Mech & Elect Engn, Changsha 410004, Peoples R China
[3] Chongqing Univ, Key Lab Low Grade Energy Utilizat Technol & Syst, Minist Educ PRC, 174 Shazheng St, Chongqing 400044, Peoples R China
基金
新加坡国家研究基金会;
关键词
Renewable energy system; Energy storage; Hydrogen storage; CCHP system; Photovoltaics; OPTIMIZATION; LOADS;
D O I
10.1016/j.apenergy.2023.122340
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Amidst the growing imperative to address carbon emissions, renewable energy combined cooling heating and power (RCCHP) systems have emerged as a transformative alternative to their fossil fuel-driven counterparts. Given the intermittent and volatile nature of renewable energy, the integration of energy storage technology has taken center stage in the exploration of RCCHP systems. This paper presents a quantitative techno-economic assessment of seven prominent energy storage configurations, including battery (BAT), thermal energy storage (TES), hydrogen storage (HS), and their combinations within the context of RCCHP systems. To avoid potential deviations caused by the rule-based energy dispatch strategy, the optimization problem is solved by a deterministic tool named mixed integer linear programming (MILP). Meanwhile, an accuracy assessment is performed on various time series aggregation methods to ensure the reliability of optimization outcomes. The key results revealed that the optimal storage configuration varies with different self-sufficiency rate (SSR) requirements. The BAT+HS+TES emerges as the most cost-effective configuration to implement 100% SSR requirements. The annualized total cost (ATC) of BAT+HS+TES configuration is 11% - 39.5% lower than other single or combined energy storage configurations. In addition, HS stands as a more economical technology for countering the off-grid effect than BAT or TES. The underestimated ATC for the RCCHP system enlarges with escalating SSR requirements when using inappropriate aggregation methods. The maximum underestimation of ATC reaches -34.8% under the 100% SSR requirement when only using one typical day from each season.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] A comprehensive review on techno-economic assessment of hybrid energy storage systems integrated with renewable energy
    Emrani, Anisa
    Berrada, Asmae
    JOURNAL OF ENERGY STORAGE, 2024, 84
  • [32] A comprehensive review on techno-economic assessment of hybrid energy storage systems integrated with renewable energy
    Emrani, Anisa
    Berrada, Asmae
    Journal of Energy Storage, 2024, 84
  • [33] A transient optimization and techno-economic assessment of a building integrated combined cooling, heating and power system in Tehran
    Gholamian, Ehsan
    Hanafizadeh, Pedram
    Ahmadi, Pouria
    Mazzarella, Livio
    ENERGY CONVERSION AND MANAGEMENT, 2020, 217
  • [34] Techno-economic analysis of a hybrid renewable energy system for an energy poor rural community
    Krishan, Om
    Suhag, Sathans
    JOURNAL OF ENERGY STORAGE, 2019, 23 : 305 - 319
  • [35] Techno-economic performance of battery energy storage system in an energy sharing community
    Li, You
    Qian, Fanyue
    Gao, Weijun
    Fukuda, Hiroatsu
    Wang, Yafei
    Journal of Energy Storage, 2022, 50
  • [36] Techno-economic performance of battery energy storage system in an energy sharing community
    Li, You
    Qian, Fanyue
    Gao, Weijun
    Fukuda, Hiroatsu
    Wang, Yafei
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [37] Techno-economic opportunities for integration of renewable energy into the Saskatchewan energy system using EnergyPLAN
    Ross-Hopley, David
    Rahman, Sakib
    Ugwu, Lord
    Ibrahim, Hussameldin
    ENERGY, 2025, 318
  • [39] Techno-economic analysis of a microgrid hybrid renewable energy system in Jordan
    Asfar J.A.
    Atieh A.
    Al-Mbaideen R.
    Journal Europeen des Systemes Automatises, 2019, 52 (04): : 415 - 423
  • [40] Techno-economic optimization of hybrid renewable energy system for islands application
    Toudefallah, Mohammad
    Stathopoulos, Panagiotis
    SUSTAINABLE FUTURES, 2024, 8