Human monocytes exposed to SARS-CoV-2 display features of innate immune memory producing high levels of CXCL10 upon restimulation

被引:1
作者
Cvetkovic, Jelena [1 ]
Jacobi, Ronald H. J. [1 ]
Miranda-Bedate, Alberto [1 ]
Pham, Nhung [2 ,3 ]
Kutmon, Martina [3 ]
Groot, James [1 ]
van de Garde, Martijn D. B. [1 ]
Pinelli, Elena [1 ]
机构
[1] Natl Inst Publ Hlth & Environm RIVM, Ctr Infect Dis Control, Antonie van Leeuwenhoeklaan 9, NL-3721 MA Utrecht, Netherlands
[2] Maastricht Univ, NUTRIM, Dept Bioinformat BiGCaT, NL-6229 ER Maastricht, Netherlands
[3] Maastricht Univ, Maastricht Ctr Syst Biol MaCSBio, NL-6229 ER Maastricht, Netherlands
关键词
trained immunity; SARS-CoV-2; CXCL10; monocytes; TRAINED IMMUNITY; BCG VACCINATION; INDUCTION; STATISTICS; EXPRESSION; PROTECTION;
D O I
10.1159/000535120
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Introduction A role for innate immune memory in protection during COVID-19 infection or vaccination has been recently reported. However, no study so far has shown whether SARS-CoV-2 can train innate immune cells. The aim of this study was to investigate whether this virus can induce trained immunity in human monocytes.Methods Monocytes were exposed to inactivated (i)SARS-CoV-2 for 24 hours, followed by a resting period in medium only and a secondary stimulation on day 6 after which, the cytokine/chemokine and transcriptomic profiles were determined.Results Compared to untrained cells, the iSARS-CoV-2-trained monocytes secreted significantly higher levels of IL-6, TNF-alpha, CXCL10, CXCL9 and CXCL11 upon restimulation. Transcriptome analysis of iSARS-CoV-2 trained monocytes revealed increased expression of several inflammatory genes. As epigenetic and metabolic modifications are hallmarks of trained immunity, we analyzed the expression of genes related to these processes. Findings indicate that indeed SARS-CoV-2-trained monocytes show changes in the expression of genes involved in metabolic pathways including the tricarboxylic acid (TCA) cycle, amino acid metabolism and the expression of several epigenetic regulator genes. Using epigenetic inhibitors that block histone methyl and acetyl transferases, we observed that the capacity of monocytes to be trained by iSARS-CoV-2 was abolished.Conclusion Overall, our findings indicate that iSARS-CoV-2 can induce properties associated with trained immunity in human monocytes. These results contribute to the knowledge required for improving vaccination strategies to prevent infectious diseases.
引用
收藏
页码:911 / 924
页数:14
相关论文
共 49 条
  • [21] Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes
    Kleinnijenhuis, Johanneke
    Quintin, Jessica
    Preijers, Frank
    Joosten, Leo A. B.
    Ifrim, Daniela C.
    Saeed, Sadia
    Jacobs, Cor
    van Loenhout, Joke
    de Jong, Dirk
    Stunnenberg, Hendrik G.
    Xavier, Ramnik J.
    van der Meer, Jos W. M.
    van Crevel, Reinout
    Netea, Mihai G.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (43) : 17537 - 17542
  • [22] Naturally circulating pertactin-deficient Bordetella pertussis strains induce distinct gene expression and inflammatory signatures in human dendritic cells
    Kroes, Michiel M.
    Miranda-Bedate, Alberto
    Hovingh, Elise S.
    Jacobi, Ronald
    Schot, Corrie
    Pupo, Elder
    Raeven, Rene H. M.
    van der Ark, Arno A. J.
    van Putten, Jos P. M.
    de Wit, Jelle
    Mariman, Rob
    Pinelli, Elena
    [J]. EMERGING MICROBES & INFECTIONS, 2021, 10 (01) : 1358 - 1368
  • [23] Kutmon Martina, 2014, F1000Res, V3, P152, DOI 10.12688/f1000research.4254.2
  • [24] Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine
    Li, Chunfeng
    Lee, Audrey
    Grigoryan, Lilit
    Arunachalam, Prabhu S.
    Scott, Madeleine K. D.
    Trisal, Meera
    Wimmers, Florian
    Sanyal, Mrinmoy
    Weidenbacher, Payton A.
    Feng, Yupeng
    Adamska, Julia Z.
    Valore, Erika
    Wang, Yanli
    Verma, Rohit
    Reis, Noah
    Dunham, Diane
    O'Hara, Ruth
    Park, Helen
    Luo, Wei
    Gitlin, Alexander D.
    Kim, Peter
    Khatri, Purvesh
    Nadeau, Kari C.
    Pulendran, Bali
    [J]. NATURE IMMUNOLOGY, 2022, 23 (04) : 543 - +
  • [25] The Molecular Signatures Database Hallmark Gene Set Collection
    Liberzon, Arthur
    Birger, Chet
    Thorvaldsdottir, Helga
    Ghandi, Mahmoud
    Mesirov, Jill P.
    Tamayo, Pablo
    [J]. CELL SYSTEMS, 2015, 1 (06) : 417 - 425
  • [26] WikiPathways: connecting communities
    Martens, Marvin
    Ammar, Ammar
    Riutta, Anders
    Waagmeester, Andra
    Slenter, Denise N.
    Hanspers, Kristina
    Miller, Ryan A.
    Digles, Daniela
    Lopes, Elisson N.
    Ehrhart, Friederike
    Dupuis, Lauren J.
    Winckers, Laurent A.
    Coort, Susan L.
    Willighagen, Egon L.
    Evelo, Chris T.
    Pico, Alexander R.
    Kutmon, Martina
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D613 - D621
  • [27] Beyond adaptive immunity: induction of trained immunity by COVID-19 adenoviral vaccines
    Netea, Mihai G.
    Joosten, Leo A. B.
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2023, 133 (02)
  • [28] Trained Immunity: A Memory for Innate Host Defense
    Netea, Mihai G.
    Quintin, Jessica
    van der Meer, Jos W. M.
    [J]. CELL HOST & MICROBE, 2011, 9 (05) : 355 - 361
  • [29] The humoral response and antibodies against SARS-CoV-2 infection
    Qi, Hai
    Liu, Bo
    Wang, Xinquan
    Zhang, Linqi
    [J]. NATURE IMMUNOLOGY, 2022, 23 (07) : 1008 - 1020
  • [30] Anti-inflammatory Trained Immunity Mediated by Helminth Products Attenuates the Induction of T Cell-Mediated Autoimmune Disease
    Quinn, Shauna M.
    Cunningham, Kyle
    Raverdeau, Mathilde
    Walsh, Robert J.
    Curham, Lucy
    Malara, Anna
    Mills, Kingston H. G.
    [J]. FRONTIERS IN IMMUNOLOGY, 2019, 10