Fusing bi-directional global-local features for single image super-resolution

被引:4
|
作者
Hwang, Kyomin [1 ]
Yoon, Gangjoon [2 ]
Song, Jinjoo [3 ]
Yoon, Sang Min [3 ]
机构
[1] Seoul Natl Univ, Grad Sch Convergence Sci & Technol, Dept Intelligence & Informat Sci, 1 Gwanak Ro, Seoul 08826, South Korea
[2] Natl Inst Math Sci, 70 Yuseong Daero 1689 Beon Gil, Daejeon 34047, South Korea
[3] Kookmin Univ, Coll Comp Sci, HCI Lab, 77 Jeongneung Ro, Seoul 02707, South Korea
基金
新加坡国家研究基金会;
关键词
Single image super-resolution; Image decomposition; Global-local feature fusion; CONVOLUTIONAL NETWORK; INTERPOLATION;
D O I
10.1016/j.engappai.2023.107336
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image super resolution, which obtains high resolution output from a corresponding low resolution image, has been challenging due to inefficiencies in establishing complex high dimensional mapping for massive raw data. Single image super resolution can dramatically improve performance compared with current algorithms due to the proliferation of deep learning systems. However, convolutional kernels in deep neural networks are locally connected to the input feature maps, whereas features only interact with their local neighbors. Mutual interference between local features without considering global features causes blurring and staircase effects. This paper proposes an end-to-end single image super resolution model by simultaneously separating high and low frequency features and learning adaptive local and global features to effectively reconstruct the high resolution image by minimizing the loss of edges and texture information. The image frequency decomposition module with an attention block emphasizes self-representative low frequency features to separate high and low frequency features. The bidirectional global and local feature exchange module extracts global and local features from the separated network and fuses each feature to improve performance. Quantitative and qualitative analyses for the proposed frequency adaptive network validated that the proposed method is stable and robust against blurring and staircase effects by separating texture and the structure into adaptive and shared networks.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Learn to Zoom in Single Image Super-Resolution
    Zhang, Zili
    Favaro, Paolo
    Tian, Yan
    Li, Jianxiang
    IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1237 - 1241
  • [22] Noisy Single Image Super-Resolution Based on Local Fractal Feature Analysis
    Shao, Kai
    Fan, Qinglan
    Zhang, Yunfeng
    Bao, Fangxun
    Zhang, Caiming
    IEEE ACCESS, 2021, 9 : 33385 - 33395
  • [23] Single-Image Super-Resolution: A Benchmark
    Yang, Chih-Yuan
    Ma, Chao
    Yang, Ming-Hsuan
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 372 - 386
  • [24] SINGLE IMAGE SUPER-RESOLUTION VIA GLOBAL-CONTEXT ATTENTION NETWORKS
    Bian, Pengcheng
    Zheng, Zhonglong
    Zhang, Dawei
    Chen, Liyuan
    Li, Minglu
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1794 - 1798
  • [25] STRUCTURE PRESERVING SINGLE IMAGE SUPER-RESOLUTION
    Yang, Fan
    Xie, Don
    Jia, Huizhu
    Chen, Rui
    Xiang, Guoqing
    Gao, Wen
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1409 - 1413
  • [26] Subspace Constraint for Single Image Super-Resolution
    Zhang, Yanlin
    Qin, Ding
    Gu, Xiaodong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT III, 2021, 12893 : 395 - 407
  • [27] Local patch encoding-based method for single image super-resolution
    Zhao, Yang
    Wang, Ronggang
    Jia, Wei
    Yang, Jianchao
    Wang, Wenmin
    Gao, Wen
    INFORMATION SCIENCES, 2018, 433 : 292 - 305
  • [28] Single Image Super-Resolution Using ConvNeXt
    You, Chenghui
    Hong, Chaoqun
    Liu, Lijuan
    Lin, Xuehan
    2022 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2022,
  • [29] FAST IMAGE SUPER-RESOLUTION VIA MULTIPLE DIRECTIONAL TRANSFORMS
    Chen, Zhiyu
    Muramatsu, Shogo
    Abe, Yoshito
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 1434 - 1438
  • [30] Learnable Nonlocal Contrastive Network for Single Image Super-Resolution
    Xu, Binbin
    Zheng, Yuhui
    APPLIED SCIENCES-BASEL, 2023, 13 (12):