Extended Multi-Component Gated Recurrent Graph Convolutional Network for Traffic Flow Prediction

被引:4
|
作者
Zhao, Junhui [1 ,2 ]
Xiong, Xincheng [1 ]
Zhang, Qingmiao [1 ]
Wang, Dongming [3 ]
机构
[1] East China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
[2] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[3] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 211189, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Roads; Convolutional neural networks; Sensors; Predictive models; Feature extraction; Correlation; Data models; Traffic flow prediction; spatial-temporal features; extended multi-component; external interactive gated recurrent unit; graph convolutional network; KALMAN FILTER; SYSTEMS;
D O I
10.1109/TITS.2023.3322745
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traffic flow prediction is a difficult undertaking in transportation systems, due to the intricate periodicity and real-time dynamics for traffic data, spatial-temporal dependency for road networks, existing prediction approaches fail to yield satisfactory results. We propose a traffic flow prediction method named Extended Multi-component External Interactive Gated Recurrent Graph Convolutional Network (EMGRGCN). The extended multi-component (EMC) module is incorporated into the prediction model to address the periodic temporal diffusion problem. Then, we introduce an encoder-decoder architecture that incorporates attention mechanism to capture spatial-temporal dependencies. Specifically, an External Interactive Gated Recurrent Unit (EIGRU) is utilized to capture crucial temporal features. EIGRU and graph convolutional network are combined in the encoder to extract spatial-temporal correlation, and EIGRU and convolutional neural network based decoder transforms the spatial-temporal characteristics into a sequence to predict future traffic flows. Experiments on public transportation datasets PEMSD8 and PEMSD4 demonstrate that EMGRGCN model achieves the best performance.
引用
收藏
页码:4634 / 4644
页数:11
相关论文
共 50 条
  • [1] Augmented Multi-Component Recurrent Graph Convolutional Network for Traffic Flow Forecasting
    Zhang, Chi
    Zhou, Hong-Yu
    Qiu, Qiang
    Jian, Zhichun
    Zhu, Daoye
    Cheng, Chengqi
    He, Liesong
    Liu, Guoping
    Wen, Xiang
    Hu, Runbo
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (02)
  • [2] Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction
    Feng, Xiaoyuan
    Chen, Yue
    Li, Hongbo
    Ma, Tian
    Ren, Yilong
    SUSTAINABILITY, 2023, 15 (09)
  • [3] STGMN: A gated multi-graph convolutional network framework for traffic flow prediction
    Ni, Qingjian
    Zhang, Meng
    APPLIED INTELLIGENCE, 2022, 52 (13) : 15026 - 15039
  • [4] STGMN: A gated multi-graph convolutional network framework for traffic flow prediction
    Qingjian Ni
    Meng Zhang
    Applied Intelligence, 2022, 52 : 15026 - 15039
  • [5] Traffic flow forecasting based on augmented multi-component recurrent graph attention network
    Yao, Yuan
    Chen, Linlong
    Wang, Xianchen
    Wu, Xiaojun
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2025,
  • [6] Traffic Flow Prediction Model Based on the Combination of Improved Gated Recurrent Unit and Graph Convolutional Network
    Zhao, Yun
    Han, Xue
    Xu, Xing
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [7] Principal graph embedding convolutional recurrent network for traffic flow prediction
    Han, Yang
    Zhao, Shengjie
    Deng, Hao
    Jia, Wenzhen
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17809 - 17823
  • [8] Principal graph embedding convolutional recurrent network for traffic flow prediction
    Yang Han
    Shengjie Zhao
    Hao Deng
    Wenzhen Jia
    Applied Intelligence, 2023, 53 : 17809 - 17823
  • [9] Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
    Lv, Mingqi
    Hong, Zhaoxiong
    Chen, Ling
    Chen, Tieming
    Zhu, Tiantian
    Ji, Shouling
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (06) : 3337 - 3348
  • [10] A Combined Traffic Flow Prediction Model Based on Variational Mode Decomposition and Adaptive Graph Convolutional Gated Recurrent Network
    Gong, Xunqiang
    Qiu, Wanjin
    Lü, Kaiyun
    Zhang, Tong
    Zhang, Rui
    Luo, Sheng
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 49 (12): : 2329 - 2341