机构:
East China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R ChinaEast China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
Zhao, Junhui
[1
,2
]
Xiong, Xincheng
论文数: 0引用数: 0
h-index: 0
机构:
East China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Peoples R ChinaEast China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
Xiong, Xincheng
[1
]
Zhang, Qingmiao
论文数: 0引用数: 0
h-index: 0
机构:
East China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Peoples R ChinaEast China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
Zhang, Qingmiao
[1
]
Wang, Dongming
论文数: 0引用数: 0
h-index: 0
机构:
Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 211189, Peoples R ChinaEast China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
Wang, Dongming
[3
]
机构:
[1] East China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Peoples R China
[2] Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
[3] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 211189, Peoples R China
Traffic flow prediction is a difficult undertaking in transportation systems, due to the intricate periodicity and real-time dynamics for traffic data, spatial-temporal dependency for road networks, existing prediction approaches fail to yield satisfactory results. We propose a traffic flow prediction method named Extended Multi-component External Interactive Gated Recurrent Graph Convolutional Network (EMGRGCN). The extended multi-component (EMC) module is incorporated into the prediction model to address the periodic temporal diffusion problem. Then, we introduce an encoder-decoder architecture that incorporates attention mechanism to capture spatial-temporal dependencies. Specifically, an External Interactive Gated Recurrent Unit (EIGRU) is utilized to capture crucial temporal features. EIGRU and graph convolutional network are combined in the encoder to extract spatial-temporal correlation, and EIGRU and convolutional neural network based decoder transforms the spatial-temporal characteristics into a sequence to predict future traffic flows. Experiments on public transportation datasets PEMSD8 and PEMSD4 demonstrate that EMGRGCN model achieves the best performance.
机构:Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
Cao, Shuqin
Wu, Libing
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
Wuhan Univ, Sch Cyber Sci & Engn, Wuhan 430072, Peoples R China
Guangdong Lab Artificial Intelligence & Digital E, Guangzhou 510335, Peoples R ChinaWuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
Wu, Libing
Zhang, Rui
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Sci & Technol, Sch Cyber Sci & Engn, Nanjing 210094, Peoples R ChinaWuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
Zhang, Rui
Wu, Dan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Windsor, Sch Comp Sci, Windsor, ON N9B 3P4, CanadaWuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
Wu, Dan
Cui, Jianqun
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R ChinaWuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
Cui, Jianqun
Chang, Yanan
论文数: 0引用数: 0
h-index: 0
机构:
Cent China Normal Univ, Sch Comp Sci, Wuhan 430079, Peoples R ChinaWuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
机构:
Hong Kong Univ Sci & Technol, Div Emerging Interdisciplinary Area, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Div Emerging Interdisciplinary Area, Hong Kong, Peoples R China
Wei, Shuqing
Feng, Siyuan
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Logist & Maritime Studies, Hong Kong, Peoples R ChinaHong Kong Univ Sci & Technol, Div Emerging Interdisciplinary Area, Hong Kong, Peoples R China
Feng, Siyuan
Yang, Hai
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Peoples R China
Hong Kong Univ Sci & Technol Guangzhou, Intelligent Transportat Thrust, Guangzhou 511453, Peoples R ChinaHong Kong Univ Sci & Technol, Div Emerging Interdisciplinary Area, Hong Kong, Peoples R China
机构:
Tongji Univ, Sch Software Engn, Shanghai, Peoples R ChinaTongji Univ, Sch Software Engn, Shanghai, Peoples R China
Han, Yang
Zhao, Shengjie
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Sch Software Engn, Shanghai, Peoples R China
Key Lab Embedded Syst & Serv Comp, Shanghai, Peoples R China
Engn Res Ctr Key Software Technol Smart City Perce, Minist Educ, Shanghai, Peoples R ChinaTongji Univ, Sch Software Engn, Shanghai, Peoples R China
Zhao, Shengjie
Deng, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Sch Software Engn, Shanghai, Peoples R ChinaTongji Univ, Sch Software Engn, Shanghai, Peoples R China
Deng, Hao
Jia, Wenzhen
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Sch Software Engn, Shanghai, Peoples R ChinaTongji Univ, Sch Software Engn, Shanghai, Peoples R China