Construction and performance of an aluminum-water system for real-time hydrogen production in a severe cold environment

被引:6
作者
Chen, Guode [1 ,2 ,3 ,4 ]
Wang, Huihu [1 ,2 ,3 ,4 ]
Zhang, Ziguan [1 ,2 ,3 ,4 ]
Xu, Huang [1 ,2 ,3 ,4 ]
Tu, Hao [1 ,2 ,3 ,4 ]
Wei, Chenhuinan [1 ,2 ,3 ,4 ]
Xiang, Xing [1 ,2 ,3 ,4 ]
Xie, Zhixiong [1 ,2 ,3 ,4 ]
机构
[1] Hubei Univ Technol, Hubei Prov Key Lab Green Mat Light Ind, Wuhan, Peoples R China
[2] Hubei Univ Technol, New Mat & Green Mfg Talent Intro & Innovat Demonst, Wuhan 430068, Hubei, Peoples R China
[3] Hubei Longzhong Lab, Xiangyang 441000, Hubei, Peoples R China
[4] Hubei Univ Technol, Sch Mat & Chem Engn, Wuhan 430068, Hubei, Peoples R China
关键词
Aluminum; Hydrolysis; Hydrogen; NaBH; 4; Severe cold; SODIUM-BOROHYDRIDE; GENERATION; HYDROLYSIS; NABH4; AL; COMPOSITES; REDUCTION; CATALYST; ALLOYS; PHOTOCATALYSTS;
D O I
10.1016/j.jpowsour.2023.233570
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To achieve real-time hydrogen delivery in a severe cold environment with temperatures between 253.15 K and 233.15 K, a unique aluminum-water system composed of Al-Ga-In-SnCl2 (AGISc)/NaBH4/g-C3N4 composite and CoCl2 methanol solution are logically designed and constructed in this study. The final hydrogen generation from AGISc/NaBH4/1g-g-C3N4 composite in a 0.04 M CoCl2 methanol aqueous solution is 1185 mL center dot gAl- 1, and the conversion efficiency is 85.6% at 253.15 K. Even at 233.15 K, a 0.06 M CoCl2 methanol aqueous solution may generate 1133 mL center dot gAl-1 of total hydrogen. With a maximum hydrogen generation rate (HGR) of 14 mL center dot gAl- 1 center dot s- 1 and a conversion efficiency of 81.8%, real-time hydrogen production under extremely cold conditions is effectively possible. The microstructure and phase characterization of samples reveal that g-C3N4 can facilitate mechanical alloying in the preparing process, while NaBH4 can release a large amount of heat and create a mildly alkaline environment during hydrolysis, both of which enhance the hydrolysis activity. Moreover, CoCl2 solvents in solution acting as the catalysts is essential to the reaction system by forming micro-cells of Al-Co or Al-Co2B.
引用
收藏
页数:12
相关论文
共 77 条
[1]   Local initiative hydrogen production by utilization of aluminum waste materials and natural acidic hot-spring water [J].
Alviani, Vani Novita ;
Hirano, Nobuo ;
Watanabe, Noriaki ;
Oba, Masahiro ;
Uno, Masaoki ;
Tsuchiya, Noriyoshi .
APPLIED ENERGY, 2021, 293
[2]   Real time adaptive efficient cold start strategy for proton exchange membrane fuel cells [J].
Amamou, A. ;
Kandidayeni, M. ;
Boulon, L. ;
Kelouwani, S. .
APPLIED ENERGY, 2018, 216 :21-30
[4]   Hydrogen generation from solid state NaBH4 by using FeCl3 catalyst for portable proton exchange membrane fuel cell applications [J].
Boran, Asli ;
Erkan, Serdar ;
Eroglu, Inci .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (34) :18915-18926
[5]   Hydrogen generation by aluminum corrosion in cobalt (II) chloride and nickel (II) chloride aqueous solution [J].
Chai, Y. J. ;
Dong, Y. M. ;
Meng, H. X. ;
Jia, Y. Y. ;
Shen, J. ;
Huang, Y. M. ;
Wang, N. .
ENERGY, 2014, 68 :204-209
[6]   New roads and challenges for fuel cells in heavy-duty transportation [J].
Cullen, David A. ;
Neyerlin, K. C. ;
Ahluwalia, Rajesh K. ;
Mukundan, Rangachary ;
More, Karren L. ;
Borup, Rodney L. ;
Weber, Adam Z. ;
Myers, Deborah J. ;
Kusoglu, Ahmet .
NATURE ENERGY, 2021, 6 (05) :462-474
[7]   Hydrogen generation from coupling reactions of sodium borohydride and aluminum powder with aqueous solution of cobalt chloride [J].
Dai, Hong-Bin ;
Ma, Guang-Lu ;
Kang, Xiang-Dong ;
Wang, Ping .
CATALYSIS TODAY, 2011, 170 (01) :50-55
[8]   On-demand hydrogen generation by the hydrolysis of ball-milled aluminum composites: A process overview [J].
du Preez, S. P. ;
Bessarabov, D. G. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (72) :35790-35813
[9]   Generation of hydrogen by aluminium oxidation in aquaeous solutions at low temperatures [J].
Dudoladov, A. O. ;
Buryakovskaya, O. A. ;
Vlaskin, M. S. ;
Zhuk, A. Z. ;
Shkolnikov, E. I. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (04) :2230-2237
[10]   Portable hydrogen generation from activated Al-Li-Bi alloys in water [J].
Fan, Mei-Qiang ;
Mei, De-Sheng ;
Chen, Da ;
Lv, Chun-Ju ;
Shu, Kang-ying .
RENEWABLE ENERGY, 2011, 36 (11) :3061-3067