Observer design for an infectious disease PDE model considering reinfection

被引:3
作者
Sano, Hideki [1 ]
Kuniya, Toshikazu [1 ]
机构
[1] Kobe Univ, Grad Sch Syst Informat, Dept Appl Math, 1-1 Rokkodai, Nada, Kobe 6578501, Japan
关键词
Kermack-McKendrick equation; First-order hyperbolic system; Time lag; Observer; Backstepping methodology; OUTPUT REGULATION; STABILIZATION; SYSTEM;
D O I
10.1016/j.automatica.2023.111091
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the observer design problem for a system composed of two Kermack- McKendrick equations considering reinfection. The system is described by two first-order hyperbolic equations that have a time lag in the nonlocal boundary condition. The element of time lag can be expressed by a transport equation. As a result, the system with one delay is equivalently written by a 3 x 3 hyperbolic equations system. In this paper, we construct observers using a backstepping methodology of PDEs. Especially, decoupling transformations are used. Numerical experimental results are also given.& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 32 条
[1]   Stabilization of a linear hyperbolic PDE with actuator and sensor dynamics [J].
Anfinsen, Henrik ;
Aamo, Ole Morten .
AUTOMATICA, 2018, 95 :104-111
[2]   Two-Sided Boundary Stabilization of Heterodirectional Linear Coupled Hyperbolic PDEs [J].
Auriol, Jean ;
Di Meglio, Florent .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (08) :2421-2436
[3]   Minimum time control of heterodirectional linear coupled hyperbolic PDEs [J].
Auriol, Jean ;
Di Meglio, Florent .
AUTOMATICA, 2016, 71 :300-307
[4]  
Bastin G, 2016, PROG NONLINEAR DIFFE, V88, P1, DOI 10.1007/978-3-319-32062-5
[5]  
Brezis H., 1988, ANAL FONCTIONNELLE
[6]   Backstepping-Forwarding Control and Observation for Hyperbolic PDEs With Fredholm Integrals [J].
Bribiesca-Argomedo, Federico ;
Krstic, Miroslav .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2015, 60 (08) :2145-2160
[7]   Stabilization and controllability of first-order integro-differential hyperbolic equations [J].
Coron, Jean-Michel ;
Hu, Long ;
Olive, Guillaume .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (12) :3554-3587
[8]   LOCAL EXPONENTIAL H2 STABILIZATION OF A 2 x 2 QUASILINEAR HYPERBOLIC SYSTEM USING BACKSTEPPING [J].
Coron, Jean-Michel ;
Vazquez, Rafael ;
Krstic, Miroslav ;
Bastin, Georges .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (03) :2005-2035
[9]  
CURTAIN RF, 1995, TEXTS APPL MATH, V21, DOI [10.1007/978-1-4612-4224-6, DOI 10.1007/978-1-4612-4224-6]
[10]   Output feedback control of general linear heterodirectional hyperbolic ODE-PDE-ODE systems [J].
Deutscher, Joachim ;
Gehring, Nicole ;
Kern, Richard .
AUTOMATICA, 2018, 95 :472-480