The Extended Frobenius Problem for Fibonacci Sequences Incremented by a Fibonacci Number

被引:1
作者
Robles-Perez, Aureliano M. [1 ,2 ]
Rosales, Jose Carlos [2 ,3 ]
机构
[1] Univ Granada, Dept Matemat Aplicada, Granada 18071, Spain
[2] Univ Granada, Inst Matemat IMAG, Granada 18071, Spain
[3] Univ Granada, Dept Algebra, Granada 18071, Spain
关键词
Fibonacci numbers; Fibonacci sequence; Frobenius problem; Numerical semigroup; Apery set; Frobenius number; Genus; Wilf's conjecture;
D O I
10.1007/s00009-023-02428-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the extended Frobenius problem for sequences of the form {f(a) + f(n)} n ? N, where {f(n)} n ? N is the Fibonacci sequence and f(a) is a Fibonacci number. As a consequence of this study, we show that the family of numerical semigroups associated with these sequences satisfies Wilf's conjecture.
引用
收藏
页数:12
相关论文
共 17 条
[1]  
APERY R, 1946, CR HEBD ACAD SCI, V222, P1198
[2]   Minimal Systems of Binomial Generators for the Ideals of Certain Monomial Curves [J].
Branco, Manuel B. ;
Colaco, Isabel ;
Ojeda, Ignacio .
MATHEMATICS, 2021, 09 (24)
[3]   Ideals of Numerical Semigroups and Error-Correcting Codes [J].
Bras-Amoros, Maria .
SYMMETRY-BASEL, 2019, 11 (11)
[4]  
Cordwell K, 2018, Arxiv, DOI arXiv:1608.08764
[5]   ON FORMULAS FOR THE FROBENIUS NUMBER OF A NUMERICAL SEMIGROUP [J].
CURTIS, F .
MATHEMATICA SCANDINAVICA, 1990, 67 (02) :190-192
[6]  
Fel L.G., 2009, Integers, V9, P107
[7]  
Gardner M., 1969, Sci. Am, V220, P116, DOI [10.1038/scientificamerican0169-116, DOI 10.1038/SCIENTIFICAMERICAN0169-116]
[8]  
Honsberger R., 1985, Mathematical Gems III
[9]  
Kaplansky I., 1943, B AM MATH SOC, V49, P784, DOI 10.1090/S0002-9904-1943-08035-4
[10]  
Marin J.M., 2007, Integers, V7, pA14