Accelerating Federated Learning With a Global Biased Optimiser

被引:5
作者
Mills, Jed [1 ]
Hu, Jia [1 ]
Min, Geyong [1 ]
Jin, Rui [1 ]
Zheng, Siwei [1 ]
Wang, Jin [1 ]
机构
[1] Univ Exeter, Dept Comp Sci, Exeter EX4 4PY, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Convergence; Computational modeling; Training; Adaptation models; Optimization; Costs; Servers; Federated learning; edge computing; communication efficiency; optimisation;
D O I
10.1109/TC.2022.3212631
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning (FL) is a recent development in distributed machine learning that collaboratively trains models without training data leaving client devices, preserving data privacy. In real-world FL, the training set is distributed over clients in a highly non-Independent and Identically Distributed (non-IID) fashion, harming model convergence speed and final performance. To address this challenge, we propose a novel, generalised approach for incorporating adaptive optimisation into FL with the Federated Global Biased Optimiser (FedGBO) algorithm. FedGBO accelerates FL by employing a set of global biased optimiser values during training, reducing 'client-drift' from non-IID data whilst benefiting from adaptive optimisation. We show that in FedGBO, updates to the global model can be reformulated as centralised training using biased gradients and optimiser updates, and apply this framework to prove FedGBO's convergence on nonconvex objectives when using the momentum-SGD (SGDm) optimiser. We also conduct extensive experiments using 4 FL benchmark datasets (CIFAR100, Sent140, FEMNIST, Shakespeare) and 3 popular optimisers (SGDm, RMSProp, Adam) to compare FedGBO against six state-of-the-art FL algorithms. The results demonstrate that FedGBO displays superior or competitive performance across the datasets whilst having low data-upload and computational costs, and provide practical insights into the trade-offs associated with different adaptive-FL algorithms and optimisers.
引用
收藏
页码:1804 / 1814
页数:11
相关论文
共 31 条
[1]  
Acar D. A. E., 2021, PROC INT C LEARN REP
[2]  
Bonawitz K., 2019, Proc. Mach. Learn. Syst., V1, P374
[3]  
Caldas S, 2019, ARXIV181201097CSSTAT
[4]  
Charles Z, 2021, PR MACH LEARN RES, V130
[5]   FedMAX: Mitigating Activation Divergence for Accurate and Communication-Efficient Federated Learning [J].
Chen, Wei ;
Bhardwaj, Kartikeya ;
Marculescu, Radu .
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT II, 2021, 12458 :348-363
[6]  
Defossez A., 2020, arXiv
[7]   BAFL: A Blockchain-Based Asynchronous Federated Learning Framework [J].
Feng, Lei ;
Zhao, Yiqi ;
Guo, Shaoyong ;
Qiu, Xuesong ;
Li, Wenjing ;
Yu, Peng .
IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (05) :1092-1103
[8]  
Hernandez D, 2020, Arxiv, DOI [arXiv:2005.04305, DOI 10.48550/ARXIV.2005.04305]
[9]  
Johnson R., 2013, Advances in Neural Information Processing Systems, V26, P315
[10]   Advances and Open Problems in Federated Learning [J].
Kairouz, Peter ;
McMahan, H. Brendan ;
Avent, Brendan ;
Bellet, Aurelien ;
Bennis, Mehdi ;
Bhagoji, Arjun Nitin ;
Bonawitz, Kallista ;
Charles, Zachary ;
Cormode, Graham ;
Cummings, Rachel ;
D'Oliveira, Rafael G. L. ;
Eichner, Hubert ;
El Rouayheb, Salim ;
Evans, David ;
Gardner, Josh ;
Garrett, Zachary ;
Gascon, Adria ;
Ghazi, Badih ;
Gibbons, Phillip B. ;
Gruteser, Marco ;
Harchaoui, Zaid ;
He, Chaoyang ;
He, Lie ;
Huo, Zhouyuan ;
Hutchinson, Ben ;
Hsu, Justin ;
Jaggi, Martin ;
Javidi, Tara ;
Joshi, Gauri ;
Khodak, Mikhail ;
Konecny, Jakub ;
Korolova, Aleksandra ;
Koushanfar, Farinaz ;
Koyejo, Sanmi ;
Lepoint, Tancrede ;
Liu, Yang ;
Mittal, Prateek ;
Mohri, Mehryar ;
Nock, Richard ;
Ozgur, Ayfer ;
Pagh, Rasmus ;
Qi, Hang ;
Ramage, Daniel ;
Raskar, Ramesh ;
Raykova, Mariana ;
Song, Dawn ;
Song, Weikang ;
Stich, Sebastian U. ;
Sun, Ziteng ;
Suresh, Ananda Theertha .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2) :1-210