Efficient Generation of Paired Single-Cell Multiomics Profiles by Deep Learning

被引:9
作者
Lan, Meng [1 ]
Zhang, Shixiong [1 ]
Gao, Lin [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; multiomics; single cells; RNA-SEQ; CHROMATIN; STATE;
D O I
10.1002/advs.202301169
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recent advances in single-cell sequencing technology have made it possible to measure multiple paired omics simultaneously in a single cell such as cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-nucleus chromatin accessibility and mRNA expression sequencing (SNARE-seq). However, the widespread application of these single-cell multiomics profiling technologies has been limited by their experimental complexity, noise in nature, and high cost. In addition, single-omics sequencing technologies have generated tremendous and high-quality single-cell datasets but have yet to be fully utilized. Here, single-cell multiomics generation (scMOG), a deep learning-based framework to generate single-cell assay for transposase-accessible chromatin (ATAC) data in silico is developed from experimentally available single-cell RNA-seq measurements and vice versa. The results demonstrate that scMOG can accurately perform cross-omics generation between RNA and ATAC, and generate paired multiomics data with biological meanings when one omics is experimentally unavailable and out of training datasets. The generated ATAC, either alone or in combination with measured RNA, exhibits equivalent or superior performance to that of the experimentally measured counterparts throughout multiple downstream analyses. scMOG is also applied to human lymphoma data, which proves to be more effective in identifying tumor samples than the experimentally measured ATAC data. Finally, the performance of scMOG is investigated in other omics such as proteomics and it still shows robust performance on surface protein generation.
引用
收藏
页数:13
相关论文
共 40 条
  • [1] Amodei D, 2016, ARXIV
  • [2] Arjovsky M, 2017, PR MACH LEARN RES, V70
  • [3] Ashuach T., 2021, BIORXIV
  • [4] Dimensionality reduction for visualizing single-cell data using UMAP
    Becht, Etienne
    McInnes, Leland
    Healy, John
    Dutertre, Charles-Antoine
    Kwok, Immanuel W. H.
    Ng, Lai Guan
    Ginhoux, Florent
    Newell, Evan W.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (01) : 38 - +
  • [5] High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell
    Chen, Song
    Lake, Blue B.
    Zhang, Kun
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (12) : 1452 - +
  • [6] Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing
    Cusanovich, Darren A.
    Daza, Riza
    Adey, Andrew
    Pliner, Hannah A.
    Christiansen, Lena
    Gunderson, Kevin L.
    Steemers, Frank J.
    Trapnell, Cole
    Shendure, Jay
    [J]. SCIENCE, 2015, 348 (6237) : 910 - 914
  • [7] Single-cell genome sequencing: current state of the science
    Gawad, Charles
    Koh, Winston
    Quake, Stephen R.
    [J]. NATURE REVIEWS GENETICS, 2016, 17 (03) : 175 - 188
  • [8] Integrated analysis of multimodal single-cell data
    Hao, Yuhan
    Hao, Stephanie
    Andersen-Nissen, Erica
    Mauck, William M. I. I. I. I. I. I.
    Zheng, Shiwei
    Butler, Andrew
    Lee, Maddie J.
    Wilk, Aaron J.
    Darby, Charlotte
    Zager, Michael
    Hoffman, Paul
    Stoeckius, Marlon
    Papalexi, Efthymia
    Mimitou, Eleni P.
    Jain, Jaison
    Srivastava, Avi
    Stuart, Tim
    Fleming, Lamar M.
    Yeung, Bertrand
    Rogers, Angela J.
    McElrath, Juliana M.
    Blish, Catherine A.
    Gottardo, Raphael
    Smibert, Peter
    Satija, Rahul
    [J]. CELL, 2021, 184 (13) : 3573 - +
  • [9] Hendrycks D, 2019, PR MACH LEARN RES, V97
  • [10] The UCSC Genome Browser Database: update 2006
    Hinrichs, A. S.
    Karolchik, D.
    Baertsch, R.
    Barber, G. P.
    Bejerano, G.
    Clawson, H.
    Diekhans, M.
    Furey, T. S.
    Harte, R. A.
    Hsu, F.
    Hillman-Jackson, J.
    Kuhn, R. M.
    Pedersen, J. S.
    Pohl, A.
    Raney, B. J.
    Rosenbloom, K. R.
    Siepel, A.
    Smith, K. E.
    Sugnet, C. W.
    Sultan-Qurraie, A.
    Thomas, D. J.
    Trumbower, H.
    Weber, R. J.
    Weirauch, M.
    Zweig, A. S.
    Haussler, D.
    Kent, W. J.
    [J]. NUCLEIC ACIDS RESEARCH, 2006, 34 : D590 - D598