Classifying breast cancer using transfer learning models based on histopathological images

被引:13
作者
Rana, Meghavi [1 ]
Bhushan, Megha [1 ]
机构
[1] DIT Univ, Sch Comp, Dehra Dun 248009, Uttaranchal, India
关键词
Deep learning; Transfer learning; Tumor classification; Healthcare; CLASSIFICATION; ALGORITHM;
D O I
10.1007/s00521-023-08484-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning algorithms are designed to learn from the data, where these require large amount of training dataset for accurate prediction. Recent studies have depicted that transfer learning-based DL approaches perform accurately in a variety of applications to create Computer-Aided Design (CAD) systems. These systems are used for the early detection and analysis of diseases such as lung cancer, brain tumor, and breast cancer using various modalities. Instead of developing neural network models from the scratch, pre-trained models are frequently utilized for DL-based tasks in computer vision as they diminish time. The effectiveness of transfer learning models without applying augmentation and preprocessing techniques to automate the classification of tumors is explained in this work. Seven transfer learning models (LENET, VGG16, DarkNet53, DarkNet19, ResNet50, Inception, and Xception) are implemented on BreakHis dataset for the tumor classification, where Xception computed the best accuracy of 83.07%. Further, to attain the accuracy with unbalanced dataset, a new parameter named Balanced Accuracy (BAC) is best computed by DarkNet53 (87.17%). This study will facilitate the researchers and medical practitioners to choose an accurate model for the classification of tumor with unbalanced dataset. It will aid medical professionals to efficiently and precisely classify the disease.
引用
收藏
页码:14243 / 14257
页数:15
相关论文
共 51 条
[1]   BCD-WERT: a novel approach for breast cancer detection using whale optimization based efficient features and extremely randomized tree algorithm [J].
Abbas, Shafaq ;
Jalil, Zunera ;
Javed, Abdul Rehman ;
Batool, Iqra ;
Khan, Mohammad Zubair ;
Noorwali, Abdulfattah ;
Gadekallu, Thippa Reddy ;
Akbar, Aqsa .
PEERJ COMPUTER SCIENCE, 2021, PeerJ Inc. (07) :1-20
[2]  
Adarsh P, 2020, INT CONF ADVAN COMPU, P687, DOI [10.1109/ICACCS48705.2020.9074315, 10.1109/icaccs48705.2020.9074315]
[3]   Going deeper: magnification-invariant approach for breast cancer classification using histopathological images [J].
Alkassar, S. ;
Jebur, Bilal A. ;
Abdullah, Mohammed A. M. ;
Al-Khalidy, Joanna H. ;
Chambers, J. A. .
IET COMPUTER VISION, 2021, 15 (02) :151-164
[4]   Mammography Image-Based Diagnosis of Breast Cancer Using Machine Learning: A Pilot Study [J].
Alshammari, Maha M. ;
Almuhanna, Afnan ;
Alhiyafi, Jamal .
SENSORS, 2022, 22 (01)
[5]   Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion [J].
Byra, Michel ;
Galperin, Michael ;
Ojeda-Fournier, Haydee ;
Olson, Linda ;
O'Boyle, Mary ;
Comstock, Christopher ;
Andre, Michael .
MEDICAL PHYSICS, 2019, 46 (02) :746-755
[6]  
CHOLLET F, 2017, PROC CVPR IEEE, P1800, DOI DOI 10.1109/CVPR.2017.195
[7]   Breast cancer detection using an ensemble deep learning method [J].
Das, Abhishek ;
Mohanty, Mihir Narayan ;
Mallick, Pradeep Kumar ;
Tiwari, Prayag ;
Muhammad, Khan ;
Zhu, Hongyin .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
[8]   Breast Cancer Risk Genes - Association Analysis in More than 113,000 Women [J].
Dorling, Leila ;
Carvalho, Sara ;
Allen, Jamie ;
Gonzalez-Neira, Anna ;
Luccarini, Craig ;
Wahlstrom, Cecilia ;
Pooley, Karen A. ;
Parsons, Michael T. ;
Fortuno, Cristina ;
Wang, Qin ;
Bolla, Manjeet K. ;
Dennis, Joe ;
Keeman, Renske ;
Alonso, M. Rosario ;
Alvarez, Nuria ;
Herraez, Belen ;
Fernandez, Victoria ;
Nunez-Torres, Rocio ;
Osorio, Ana ;
Valcich, Jeanette ;
Li, Minerva ;
Torngren, Therese ;
Harrington, Patricia A. ;
Baynes, Caroline ;
Conroy, Don M. ;
Decker, Brennan ;
Fachal, Laura ;
Mavaddat, Nasim ;
Ahearn, Thomas ;
Aittomaki, Kristiina ;
Antonenkova, Natalia N. ;
Arnold, Norbert ;
Arveux, Patrick ;
Ausems, Margreet G. E. M. ;
Auvinen, Paivi ;
Becher, Heiko ;
Beckmann, Matthias W. ;
Behrens, Sabine ;
Bermisheva, Marina ;
Bialkowska, Katarzyna ;
Blomqvist, Carl ;
Bogdanova, Natalia V. ;
Bogdanova-Markov, Nadja ;
Bojesen, Stig E. ;
Bonanni, Bernardo ;
Borresen-Dale, Anne-Lise ;
Brauch, Hiltrud ;
Bremer, Michael ;
Briceno, Ignacio ;
Bruning, Thomas .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (05) :428-439
[9]   Automatic facial recognition using VGG16 based transfer learning model [J].
Dubey, Arun Kumar ;
Jain, Vanita .
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2020, 41 (07) :1589-1596
[10]   Convolutional Neural Networks based classification of breast ultrasonography images by hybrid method with respect to benign, malignant, and normal using mRMR [J].
Eroglu, Yesim ;
Yildirim, Muhammed ;
Cinar, Ahmet .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 133