Approximation Opportunities in Edge Computing Hardware: A Systematic Literature Review

被引:18
作者
Damsgaard, Hans Jakob [1 ]
Ometov, Aleksandr [1 ]
Nurmi, Jari [1 ]
机构
[1] Tampere Univ, Elect Engn Unit, Korkeakoulunkatu 1, Tampere 33720, Finland
基金
欧盟地平线“2020”;
关键词
Approximate computing; Edge computing; ENERGY-EFFICIENT; RECONFIGURABLE ARCHITECTURE; QUALITY MANAGEMENT; NEURAL-NETWORK; MULTIPLIER; CHALLENGES; DESIGN; COMMUNICATION; ACCELERATOR; FRAMEWORK;
D O I
10.1145/3572772
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the increasing popularity of the Internet of Things and massive Machine Type Communication technologies, the number of connected devices is rising. However, although enabling valuable effects to our lives, bandwidth and latency constraints challenge Cloud processing of their associated data amounts. A promising solution to these challenges is the combination of Edge and approximate computing techniques that allows for data processing nearer to the user. This article aims to survey the potential benefits of these paradigms' intersection. We provide a state-of-the-art review of circuit-level and architecture-level hardware techniques and popular applications. We also outline essential future research directions.
引用
收藏
页数:49
相关论文
共 204 条
  • [1] WiSync: An Architecture for Fast Synchronization through On-Chip Wireless Communication
    Abadal, Sergi
    Cabellos-Aparicio, Albert
    Alarcon, Eduard
    Torrellas, Josep
    [J]. ACM SIGPLAN NOTICES, 2016, 51 (04) : 3 - 17
  • [2] X-CGRA: An Energy-Efficient Approximate Coarse-Grained Reconfigurable Architecture
    Akbari, Omid
    Kamal, Mehdi
    Afzali-Kusha, Ali
    Pedram, Massoud
    Shafique, Muhammad
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2020, 39 (10) : 2558 - 2571
  • [3] Toward Approximate Computing for Coarse-Grained Reconfigurable Architectures
    Akbari, Omid
    Kamal, Mehdi
    Afzali-Kusha, Ali
    Pedram, Massoud
    Shafique, Muhammad
    [J]. IEEE MICRO, 2018, 38 (06) : 63 - 72
  • [4] True North: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip
    Akopyan, Filipp
    Sawada, Jun
    Cassidy, Andrew
    Alvarez-Icaza, Rodrigo
    Arthur, John
    Merolla, Paul
    Imam, Nabil
    Nakamura, Yutaka
    Datta, Pallab
    Nam, Gi-Joon
    Taba, Brian
    Beakes, Michael
    Brezzo, Bernard
    Kuang, Jente B.
    Manohar, Rajit
    Risk, William P.
    Jackson, Bryan
    Modha, Dharmendra S.
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2015, 34 (10) : 1537 - 1557
  • [5] The future of computing paradigms for medical and emergency applications
    Alekseeva, Daria
    Ometov, Aleksandr
    Arponen, Otso
    Lohan, Elena Simona
    [J]. COMPUTER SCIENCE REVIEW, 2022, 45
  • [6] Allen CI, 2014, PROC NAECON IEEE NAT, P21, DOI 10.1109/NAECON.2014.7045768
  • [7] Dynamic Onloading of Deep Neural Networks from Cloud to Device
    Almeida, Mario
    Laskaridis, Stefanos
    Venieris, Stylianos, I
    Leontiadis, Ilias
    Lane, Nicholas D.
    [J]. ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2022, 21 (06)
  • [8] Approximate DCT Image Compression Using Inexact Computing
    Almurib, Haider A. F.
    Kumar, Thulasiraman Nandha
    Lombardi, Fabrizio
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 2018, 67 (02) : 149 - 159
  • [9] Circuit-Level Techniques for Logic and Memory Blocks in Approximate Computing Systemsx
    Amanollahi, Saba
    Kamal, Mehdi
    Afzali-Kusha, Ali
    Pedram, Massoud
    [J]. PROCEEDINGS OF THE IEEE, 2020, 108 (12) : 2150 - 2177
  • [10] m-SAAC: Multi-stage adaptive approximation control to select approximate computing modes for vision applications
    Amjad, Rida
    Hafiz, Rehan
    Ilyas, Muhammad U.
    Younis, Muhammad Shahzad
    Shafique, Muhammad
    [J]. MICROELECTRONICS JOURNAL, 2019, 91 : 84 - 91