Analytic Fourier-Feynman transforms associated with bounded linear operators on abstract Wiener spaces

被引:2
作者
Choi, Jae Gil [1 ]
机构
[1] Dankook Univ, Sch Gen Educ, Cheonan 31116, South Korea
基金
新加坡国家研究基金会;
关键词
Abstract Wiener space; Adjoint operator; Analytic Feynman integral; Analytic Fourier-Feynman transform; SCALE-INVARIANT MEASURABILITY; GAUSSIAN PATHS; CONVOLUTION;
D O I
10.1016/j.jmaa.2022.126952
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the concepts of the analytic Feynman integral and the analytic Fourier-Feynman transform associated with bounded linear operators on abstract Wiener spaces. We then investigate Fubini theorems for the analytic Feynman integrals and the transforms. The Fubini theorems for the transforms investigated in this paper are to express the iterated Fourier-Feynman transform associated with bounded linear operators as a single Fourier-Feynman transform.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 35 条
[1]  
Ahn J.M., 1998, B KOREAN MATH SOC, V35, P99
[2]   Fourier-Feynman transform, convolution and first variation [J].
Ahn, JM ;
Chang, KS ;
Kim, BS ;
Yoo, I .
ACTA MATHEMATICA HUNGARICA, 2003, 100 (03) :215-235
[3]  
[Anonymous], 1974, Measure Theory
[4]  
[Anonymous], 1980, Measure Theory
[5]  
[Anonymous], 1965, PROC 5 BERKELEY S MA
[6]  
Brue M.D., 1972, THESIS U MINNESOTA M
[7]  
Cameron R.H., 1962, J ANAL MATH, V10, P287, DOI [10.1007/BF02790311, DOI 10.1007/BF02790311]
[8]  
CAMERON RH, 1976, MICH MATH J, V23, P1
[9]  
Cameron RobertH., 1980, PROCEEDINGS, V798, P18
[10]  
Chang K. S., 2001, J. Korean Math. Soc., V38, P485