Bloch estimates in non-doubling generalized Orlicz spaces

被引:1
作者
Harjulehto, Petteri [1 ]
Hasto, Peter [2 ]
Juusti, Jonne [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FI-00014 Helsinki, Finland
[2] Univ Turku, Dept Math & Stat, FI-20014 Turku, Finland
来源
MATHEMATICS IN ENGINEERING | 2023年 / 5卷 / 03期
关键词
non-doubling; Harnack?s inequality; generalized Orlicz space; Musielak-Orlicz spaces; nonstandard growth; variable exponent; double phase; RENORMALIZED SOLUTIONS; HOLDER CONTINUITY; REGULARITY; FUNCTIONALS; MINIMIZERS; INEQUALITY; EQUATIONS; EXPONENT;
D O I
10.3934/mine.2023052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study minimizers of non-autonomous functionalsinf u circumflex accent cc(x, |Vu|) dx Omega when cc has generalized Orlicz growth. We consider the case where the upper growth rate of cc is unbounded and prove the Harnack inequality for minimizers. Our technique is based on "truncating" the function cc to approximate the minimizer and Harnack estimates with uniform constants via a Bloch estimate for the approximating minimizers.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 58 条
  • [1] Adams D. R., 1996, FUNCTION SPACES POTE, DOI [10.1007/978-3-662-03282-4, DOI 10.1007/978-3-662-03282-4]
  • [2] Adams RA., 2003, Sobolev Spaces
  • [3] Gradient estimates for multi-phase problems
    Baasandorj, Sumiya
    Byun, Sun-Sig
    Oh, Jehan
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (03)
  • [4] Irregular obstacle problems for Orlicz double phase
    Baasandorj, Sumiya
    Byun, Sun-Sig
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (01)
  • [5] NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES
    Baroni, P.
    Colombo, M.
    Mingione, G.
    [J]. ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) : 347 - 379
  • [6] Regularity for general functionals with double phase
    Baroni, Paolo
    Colombo, Maria
    Mingione, Giuseppe
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
  • [7] Harnack inequalities for double phase functionals
    Baroni, Paolo
    Colombo, Maria
    Mingione, Giuseppe
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 : 206 - 222
  • [8] The weak Harnack inequality for unbounded supersolutions of equations with generalized Orlicz growth
    Benyaiche, Allami
    Harjulehto, Petteri
    Hasto, Peter
    Karppinen, Arttu
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 275 : 790 - 814
  • [9] Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces
    Benyaiche, Allami
    Khlifi, Ismail
    [J]. POTENTIAL ANALYSIS, 2020, 53 (02) : 631 - 643
  • [10] REGULARITY RESULTS FOR GENERALIZED DOUBLE PHASE FUNCTIONALS
    Byun, Sun-Sig
    Oh, Jehan
    [J]. ANALYSIS & PDE, 2020, 13 (05): : 1269 - 1300