Prediction of Early Compressive Strength of Ultrahigh-Performance Concrete Using Machine Learning Methods

被引:16
作者
Zhu, Hailiang [1 ,2 ]
Wu, Xiong [3 ,4 ]
Luo, Yaoling [4 ]
Jia, Yue [1 ]
Wang, Chong [1 ]
Fang, Zheng [1 ]
Zhuang, Xiaoying [5 ,6 ]
Zhou, Shuai [1 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400045, Peoples R China
[2] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
[3] China West Construct Acad Bldg Mat, Chengdu 610015, Peoples R China
[4] Shanghai Tunnel Engn Co Ltd, Shanghai 200082, Peoples R China
[5] Leibniz Univ Hannover, Computat Sci & Simulat Technol, Inst Photon, Fac Math & Phys, Appelstr 11A, D-30167 Hannover, Germany
[6] Tongji Univ, Dept Geotech Engn, Coll Civil Engn, 1239 Si Ping Rd, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
UHPC; prediction; ANN; SVM; 7-day compressive strength; FIBER-REINFORCED CONCRETE; ARTIFICIAL NEURAL-NETWORKS; MECHANICAL-PROPERTIES; MESHFREE METHOD; MIX DESIGN; MODEL; AGGREGATE; HYDRATION; AGE; MICROCAPSULES;
D O I
10.1142/S0219876221410231
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, a new prediction model is proposed to predict the 7-day compressive strength of ultrahigh-performance concrete (UHPC) with different mix proportions using artificial neural network (ANN) and support vector machine (SVM). The predicted results are compared with the experimental results to verify the proposed model. Then, the importance of each component and the sensitivity of parameters are investigated. The research proves that the proposed model can estimate the 7-day compressive strength of UHPC based on the mix proportions.
引用
收藏
页数:23
相关论文
共 76 条
  • [1] Prediction of minimum factor of safety against slope failure in clayey soils using artificial neural network
    Abdalla, Jamal A.
    Attom, Mousa F.
    Hawileh, Rami
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2015, 73 (09) : 5463 - 5477
  • [2] Effect of chemical and thermal activation on the microstructural and mechanical properties of more sustainable UHPC
    Abdulkareem, Omar M.
    Ben Fraj, Amor
    Bouasker, Marwen
    Khelidj, Abdelhafid
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2018, 169 : 567 - 577
  • [3] Mixture design and early age investigations of more sustainable UHPC
    Abdulkareem, Omar M.
    Ben Fraj, Amor
    Bouasker, Marwen
    Khelidj, Abdelhafid
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2018, 163 : 235 - 246
  • [4] Assessment of compressive strength of Ultra-high Performance Concrete using deep machine learning techniques
    Abuodeh, Omar R.
    Abdalla, Jamal A.
    Hawileh, Rami A.
    [J]. APPLIED SOFT COMPUTING, 2020, 95
  • [5] Influence of admixing natural pozzolan as partial replacement of cement and microsilica in UHPC mixtures
    Ahmad, Shamsad
    Mohaisen, Khaled Own
    Adekunle, Saheed Kolawole
    Al-Dulaijan, Salah U.
    Maslehuddin, Mohammed
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2019, 198 : 437 - 444
  • [6] Development of ultra-high performance concrete with locally available materials
    Alsalman, Ali
    Dang, Canh N.
    Hale, W. Micah
    [J]. CONSTRUCTION AND BUILDING MATERIALS, 2017, 133 : 135 - 145
  • [7] Artificial Neural Network Methods for the Solution of Second Order Boundary Value Problems
    Anitescu, Cosmin
    Atroshchenko, Elena
    Alajlan, Naif
    Rabczuk, Timon
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 59 (01): : 345 - 359
  • [8] Anticipating the Compressive Strength of Hydrated Lime Cement Concrete Using Artificial Neural Network Model
    Awodiji, Chioma T. G.
    Onwuka, Davis O.
    Okere, Chinenye E.
    Ibearugbulem, Owus M.
    [J]. CIVIL ENGINEERING JOURNAL-TEHRAN, 2018, 4 (12): : 3005 - 3018
  • [9] Enhancing the Microstructure and Sustainability of Ultra-High-Performance Concrete Using Ultrafine Calcium Carbonate and High-Volume Fly Ash under Different Curing Regimes
    Azmee, Norzaireen
    Abbas, Yassir M.
    Shafiq, Nasir
    Fares, Galal
    Osman, Montasir
    Khan, M. Iqbal
    [J]. SUSTAINABILITY, 2021, 13 (07)
  • [10] An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns
    Cascardi, Alessio
    Micelli, Francesco
    Aiello, Maria Antonietta
    [J]. ENGINEERING STRUCTURES, 2017, 140 : 199 - 208