Krieger's type for ergodic non-singular Poisson actions of non-(T) locally compact groups

被引:2
作者
Danilenko, Alexandre, I [1 ]
机构
[1] Ukrainian Natl Acad Sci, B Verkin Inst Low Temp Phys & Engn, 47 Nauky Ave, UA-61164 Kharkiv, Ukraine
关键词
Nonsingular Poisson action; Krieger type; Kazhdan property (T); Haagerup property; amenable action; BERNOULLI ACTIONS; MIXING ACTIONS; PROPERTY-T;
D O I
10.1017/etds.2022.34
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that each locally compact second countable non-(T) group G admits non-strongly ergodic weakly mixing IDPFT Poisson actions of any possible Krieger type. These actions are amenable if and only if G is amenable. If G has the Haagerup property, then (and only then) these actions can be chosen of 0-type. If G is amenable, then G admits weakly mixing Bernoulli actions of arbitrary Krieger type.
引用
收藏
页码:2317 / 2353
页数:37
相关论文
共 31 条
[1]  
Abramowitz M., 1965, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, VVolume 55, P374
[2]   On spectral characterizations of amenability [J].
Anantharaman-Delaroche, C .
ISRAEL JOURNAL OF MATHEMATICS, 2003, 137 (1) :1-33
[3]   ERGODIC THEORY OF AFFINE ISOMETRIC ACTIONS ON HILBERT SPACES [J].
Arano, Yuki ;
Isono, Yusuke ;
Marrakchi, Amine .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2021, 31 (05) :1013-1094
[4]  
AUSLANDER L, 1966, MEM AM MATH SOC, V62
[5]  
Bekka B, 2008, NEW MATH MONOGR, P1
[6]  
Berendschot T., ANAL PDE
[7]   MIXING ACTIONS OF GROUPS [J].
BERGELSON, V ;
ROSENBLATT, J .
ILLINOIS JOURNAL OF MATHEMATICS, 1988, 32 (01) :65-80
[8]  
Cherix PA, 2001, PROG MATH, V197, P41
[9]   PROPERTY-T AND ASYMPTOTICALLY INVARIANT SEQUENCES [J].
CONNES, A ;
WEISS, B .
ISRAEL JOURNAL OF MATHEMATICS, 1980, 37 (03) :209-210
[10]  
Danilenko A. I., J ANAL MATH