Error Estimate of a Quasi-Monte Carlo Time-Splitting Pseudospectral Method for Nonlinear Schrodinger Equation with Random Potentials

被引:1
作者
Wu, Zhizhang [1 ]
Zhang, Zhiwen [1 ]
Zhao, Xiaofei [2 ,3 ]
机构
[1] Univ Hong Kong, Dept Math, Pokfulam Rd, Hong Kong, Peoples R China
[2] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan 430072, Peoples R China
关键词
nonlinear Schrodinger (NLS) equation; random potential; quasi-Monte Carlo (QMC) method; time splitting; pseudospectral method; error estimate; PARTIAL-DIFFERENTIAL-EQUATIONS; STOCHASTIC COLLOCATION METHOD; HIGH-DIMENSIONAL INTEGRATION; BY-COMPONENT CONSTRUCTION; COMPUTATIONAL METHODS; LATTICE RULES; LOCALIZATION; ANDERSON; DIFFUSION; RANK-1;
D O I
10.1137/22M1525181
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the numerical solution of a nonlinear Schro"\dinger equation with spatial random potential. The randomly shifted quasi -Monte Carlo (QMC) lattice rule combined with the time -splitting pseudospectral discretization is applied and analyzed. The nonlinearity in the equation induces difficulties in estimating the regularity of the solution in random space. By the technique of weighted Sobolev space, we identify the possible weights and show the existence of QMC that converges optimally at the almost-linear rate without dependence on dimensions. The full error estimate of the scheme is established. We present numerical results to verify the accuracy and investigate the wave propagation.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 55 条
  • [1] ADAMS R. A., 2021, Sobolev Spaces
  • [2] LOCALIZATION AND DELOCALIZATION OF GROUND STATES OF BOSE-EINSTEIN CONDENSATES UNDER DISORDER
    Altmann, Robert
    Henning, Patrick
    Peterseim, Daniel
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 2022, 82 (01) : 330 - 358
  • [3] Quantitative Anderson localization of Schrodinger eigenstates under disorder potentials
    Altmann, Robert
    Henning, Patrick
    Peterseim, Daniel
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (05) : 917 - 955
  • [4] ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES
    ANDERSON, PW
    [J]. PHYSICAL REVIEW, 1958, 109 (05): : 1492 - 1505
  • [5] Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations
    Antoine, Xavier
    Bao, Weizhu
    Besse, Christophe
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) : 2621 - 2633
  • [6] A stochastic collocation method for elliptic partial differential equations with random input data
    Babuska, Ivo
    Nobile, Fabio
    Tempone, Raul
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (03) : 1005 - 1034
  • [7] MATHEMATICAL THEORY AND NUMERICAL METHODS FOR BOSE-EINSTEIN CONDENSATION
    Bao, Weizhu
    Cai, Yongyong
    [J]. KINETIC AND RELATED MODELS, 2013, 6 (01) : 1 - 135
  • [8] Caflisch R. E., 1998, Acta Numerica, V7, P1, DOI 10.1017/S0962492900002804
  • [9] Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs
    Cohen, Albert
    DeVore, Ronald
    Schwab, Christoph
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (06) : 615 - 646
  • [10] Solitonization of the Anderson localization
    Conti, Claudio
    [J]. PHYSICAL REVIEW A, 2012, 86 (06):