Zoology of non-Hermitian spectra and their graph topology

被引:18
作者
Tai, Tommy [1 ,2 ,3 ]
Lee, Ching Hua [3 ]
机构
[1] MIT, Dept Phys, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Cambridge, Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[3] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
基金
新加坡国家研究基金会;
关键词
EDGE STATES; REALIZATION; POINTS;
D O I
10.1103/PhysRevB.107.L220301
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We uncover the very rich graph topology of generic bounded non-Hermitian spectra, distinct from the topology of conventional band invariants and complex spectral winding. The graph configuration of complex spectra are characterized by the algebraic structures of their corresponding energy dispersions, drawing new intimate links between combinatorial graph theory, algebraic geometry, and non-Hermitian band topology. Spectral graphs that are conformally related belong to the same equivalence class, and are characterized by emergent symmetries not necessarily present in the physical Hamiltonian. The simplest class encompasses well-known examples such as the Hatano-Nelson and non-Hermitian SSH models, while more sophisticated classes represent novel multicomponent models with interesting spectral graphs resembling stars, flowers, and insects. With recent rapid advancements in metamaterials, ultracold atomic lattices, and quantum circuits, it is now feasible to not only experimentally realize such esoteric spectra, but also investigate the non-Hermitian flat bands and anomalous responses straddling transitions between different spectral graph topologies.
引用
收藏
页数:9
相关论文
共 153 条
  • [1] aps, About us, DOI [10.1103/PhysRevB.107.L220301, DOI 10.1103/PHYSREVB.107.L220301]
  • [2] Ashcroft N., 1976, Solid State Physics
  • [3] Identification of Symmetry-Protected Topological States on Noisy Quantum Computers
    Azses, Daniel
    Haenel, Rafael
    Naveh, Yehuda
    Raussendorf, Robert
    Sela, Eran
    Dalla Torre, Emanuele G.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (12)
  • [4] Quantized electric multipole insulators
    Benalcazar, Wladimir A.
    Bernevig, B. Andrei
    Hughes, Taylor L.
    [J]. SCIENCE, 2017, 357 (6346) : 61 - 66
  • [5] Real spectra in non-Hermitian Hamiltonians having PT symmetry
    Bender, CM
    Boettcher, S
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (24) : 5243 - 5246
  • [6] Optical and Electronic Properties of Two-Dimensional Layered Materials
    Bernardi, Marco
    Ataca, Can
    Palummo, Maurizia
    Grossman, Jeffrey C.
    [J]. NANOPHOTONICS, 2017, 6 (02) : 479 - 493
  • [7] Probing many-body dynamics on a 51-atom quantum simulator
    Bernien, Hannes
    Schwartz, Sylvain
    Keesling, Alexander
    Levine, Harry
    Omran, Ahmed
    Pichler, Hannes
    Choi, Soonwon
    Zibrov, Alexander S.
    Endres, Manuel
    Greiner, Markus
    Vuletic, Vladan
    Lukin, Mikhail D.
    [J]. NATURE, 2017, 551 (7682) : 579 - +
  • [8] Non-Hermitian Boundary Modes and Topology
    Borgnia, Dan S.
    Kruchkov, Alex Jura
    Slager, Robert-Jan
    [J]. PHYSICAL REVIEW LETTERS, 2020, 124 (05)
  • [9] Non-Hermitian Topological Sensors
    Budich, Jan Carl
    Bergholtz, Emil J.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (18)
  • [10] Bandgap engineering of two-dimensional semiconductor materials
    Chaves, A.
    Azadani, J. G.
    Alsalman, Hussain
    da Costa, D. R.
    Frisenda, R.
    Chaves, A. J.
    Song, Seung Hyun
    Kim, Y. D.
    He, Daowei
    Zhou, Jiadong
    Castellanos-Gomez, A.
    Peeters, F. M.
    Liu, Zheng
    Hinkle, C. L.
    Oh, Sang-Hyun
    Ye, Peide D.
    Koester, Steven J.
    Lee, Young Hee
    Avouris, Ph.
    Wang, Xinran
    Low, Tony
    [J]. NPJ 2D MATERIALS AND APPLICATIONS, 2020, 4 (01)