A Matrix Mittag-Leffler Function and the Fractional Nonlinear Partial Integro-Differential Equation in Rn

被引:3
作者
Li, Chenkuan [1 ]
Beaudin, Joshua [1 ]
Rahmoune, Azedine [2 ]
Remili, Walid [2 ]
机构
[1] Brandon Univ, Dept Math & Comp Sci, Brandon, MB R7A 6A9, Canada
[2] Univ Mohamed El Bachir El Ibrahimi Bordj Bou Arrer, Fac Math & Informat, Dept Math, El Anasser 34030, Algeria
基金
加拿大自然科学与工程研究理事会;
关键词
Banach's contractive principle; matrix Mittag-Leffler function; Babenko's approach; implicit integral equation;
D O I
10.3390/fractalfract7090651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the matrix Mittag-Leffler function, which is a generalization of the multivariate Mittag-Leffler function, in order to investigate the uniqueness of the solutions to a fractional nonlinear partial integro-differential equation in Rn with a boundary condition based on Banach's contractive principle and Babenko's approach. In addition, we present an example demonstrating applications of the key results derived using a Python code that computes the approximate value of our matrix Mittag-Leffler function.
引用
收藏
页数:11
相关论文
共 9 条
[1]  
Adjabi Y, 2016, J COMPUT ANAL APPL, V21, P661
[2]  
Babenko Yu., 1986, Heat and Mass Transfer
[3]   Computing the Matrix Mittag-Leffler Function with Applications to Fractional Calculus [J].
Garrappa, Roberto ;
Popolizio, Marina .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) :129-153
[4]  
Hadid S. B., 1996, PANAMER MATH J, V6, P57
[5]  
Kilbas A.A., 2006, Theory and Applications of Fractional Differential Equations, DOI DOI 10.1016/S0304-0208(06)80001-0
[6]   On the Boundary Value Problem of Nonlinear Fractional Integro-Differential Equations [J].
Li, Chenkuan ;
Saadati, Reza ;
Srivastava, Rekha ;
Beaudin, Joshua .
MATHEMATICS, 2022, 10 (12)
[7]   UNIQUENESS OF THE PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS [J].
Li, Chenkuan .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2021, 33 (04) :463-475
[8]   On the solution of the fractional nonlinear Schrodinger equation [J].
Rida, S. Z. ;
EI-Sherbiny, H. M. ;
Arafa, A. A. M. .
PHYSICS LETTERS A, 2008, 372 (05) :553-558
[9]   Travelling wave solutions of the generalized nonlinear fifth-order KdV water wave equations and its stability [J].
Seadawy, Aly R. ;
Lu, Dianchen ;
Yue, Chen .
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2017, 11 (04) :623-633