Supermolecular nanovehicles co-delivering TLR7/8-agonist and anti-CD47 siRNA for enhanced tumor immunotherapy

被引:10
作者
Shang, Tongyi [1 ]
Yu, Xinying [1 ]
Gu, Yuan [1 ]
Du, Rong [3 ]
Cai, Yanjun [1 ]
Li, Yuwei [1 ]
Zheng, Guodong [1 ]
Wang, Chaoqun [1 ]
Zhang, Jian [1 ]
Liu, Jifang [1 ]
Han, Shisong [2 ]
Yang, Bin [1 ]
机构
[1] Guangzhou Med Univ, Sch Basic Med Sci, Affiliated Hosp 6, Qingyuan Peoples Hosp,Dept Biomed Engn, Guangzhou 511436, Peoples R China
[2] Jinan Univ, Zhuhai Peoples Hosp, Guangdong Prov Key Lab Tumor Intervent Diag & Tre, Zhuhai Hosp, Zhuhai 519000, Peoples R China
[3] Guangzhou Med Univ, Sch Pharmaceut Sci, Guangzhou 511436, Peoples R China
基金
中国国家自然科学基金;
关键词
Tumor immunotherapy; Macrophages; CD47; siRNA; Host-guest nanodrug; HOST-GUEST INTERACTION; MACROPHAGE POLARIZATION; INHIBIT MELANOMA; TLR7/8; AGONISTS; GENE-THERAPY; CANCER; NANOPARTICLES; DISEASES;
D O I
10.1016/j.ijbiomac.2023.126539
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cancer immunotherapy is the most promising method for tumor therapy in recent years, among which the macrophages play a critical role in the antitumor immune response. However, tumor-associated macrophages (TAMs) usually display the tumor-promoting M2 phenotype rather than the tumor-killing M1 phenotype. Moreover, the over-expressed CD47 on tumor cells severely hinders the function of macrophages by blocking the CD47/SIRP alpha pathway. Herein, a nano-assembly system of CHTR/siRNA was constructed through the host-guest interaction of a hyperbranched amino-functionalized beta-cyclodextrin and immune agonist imiquimod (R848), while CD47 siRNA was loaded inside through electrostatic interaction. The Toll-like receptor (TLR) 7/8 agonist R848 can "re-educate" macrophages from the protumoral M2 phenotype to antitumoral M1 phenotype, while CD47 siRNA can down-regulate the "don't eat me" CD47 signal on the surface of cancer cells and enhance the phagocytosis of cancer cells by macrophages. Through the dual regulation of TAMs, the immunosuppressive tumor microenvironment was relieved, and the host-guest drug-carrying system resulted in synergistic immunotherapy effect on tumors and inhibited tumor growth. The facile self-assembly of nanodrug offers a new strategy in co-delivery of multiple therapeutic agents for cascade cancer immunotherapy.
引用
收藏
页数:12
相关论文
共 56 条
[1]   The macrophage checkpoint CD47: SIRPα for recognition of 'self' cells: from clinical trials of blocking antibodies to mechanobiological fundamentals [J].
Andrechak, Jason C. ;
Dooling, Lawrence J. ;
Discher, Dennis E. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 374 (1779)
[2]   Macrophage Polarization States in the Tumor Microenvironment [J].
Boutilier, Ava J. ;
Elsawa, Sherine F. .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (13)
[3]   How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions [J].
Bruger, Annika M. ;
Dorhoi, Anca ;
Esendagli, Gunes ;
Barczyk-Kahlert, Katarzyna ;
van der Bruggen, Pierre ;
Lipoldova, Marie ;
Perecko, Tomas ;
Santibanez, Juan ;
Saraiva, Margarida ;
Van Ginderachter, Jo A. ;
Brandau, Sven .
CANCER IMMUNOLOGY IMMUNOTHERAPY, 2019, 68 (04) :631-644
[4]   Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth [J].
Cao, Meng ;
Yan, Huaijiang ;
Han, Xuan ;
Weng, Ling ;
Wei, Qin ;
Sun, Xiaoyan ;
Lu, Wuguang ;
Wei, Qingyun ;
Ye, Juan ;
Cai, Xueting ;
Hu, Chunping ;
Yin, Xiaoyang ;
Cao, Peng .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2019, 7 (01)
[5]   Modulation of tumor microenvironment using a TLR-7/8 agonist-loaded nanoparticle system that exerts low-temperature hyperthermia and immunotherapy for in situ cancer vaccination [J].
Chen, Po-Ming ;
Pan, Wen-Yu ;
Wu, Cheng-Yu ;
Yeh, Ching-Yen ;
Korupalli, Chiranjeevi ;
Luo, Po-Kai ;
Chou, Chun-Ju ;
Chia, Wei-Tso ;
Sung, Hsing-Wen .
BIOMATERIALS, 2020, 230
[6]   A lysosome-targeted DNA nanodevice selectively targets macrophages to attenuate tumours [J].
Cui, Chang ;
Chakraborty, Kasturi ;
Tang, Xu Anna ;
Schoenfelt, Kelly Q. ;
Hoffman, Alexandria ;
Blank, Ariane ;
McBeth, Blake ;
Pulliam, Natalie ;
Reardon, Catherine A. ;
Kulkarni, Swati A. ;
Vaisar, Tomas ;
Ballabio, Andrea ;
Krishnan, Yamuna ;
Becker, Lev .
NATURE NANOTECHNOLOGY, 2021, 16 (12) :1394-U122
[7]   Macrophages as regulators of tumour immunity and immunotherapy [J].
DeNardo, David G. ;
Ruffell, Brian .
NATURE REVIEWS IMMUNOLOGY, 2019, 19 (06) :369-382
[8]   Non-Viral Vector-Mediated Gene Therapy for ALS: Challenges and Future Perspectives [J].
Ediriweera, Gayathri R. ;
Chen, Liyu ;
Yerbury, Justin J. ;
Thurecht, Kristofer J. ;
Vine, Kara L. .
MOLECULAR PHARMACEUTICS, 2021, 18 (06) :2142-2160
[9]   Deconvoluting Lipid Nanoparticle Structure for Messenger RNA Delivery [J].
Eygeris, Yulia ;
Patel, Siddharth ;
Jozic, Antony ;
Sahay, Gaurav .
NANO LETTERS, 2020, 20 (06) :4543-4549
[10]   Switchable supramolecular catalysis using DNA-templated scaffolds [J].
Garcia, Miguel Angel Aleman ;
Hu, Yuwei ;
Willner, Itamar .
CHEMICAL COMMUNICATIONS, 2016, 52 (10) :2153-2156