3D Nuclei Segmentation through Deep Learning

被引:1
作者
Rojas, Roberto [1 ]
Navarro, Carlos F. [2 ]
Orellana, Gabriel A.
Lemus, Carmen Gloria C. [3 ]
Castaneda, Victor [1 ]
机构
[1] Univ Chile, Fac Med, Med Technol Dept, Santiago, Chile
[2] Univ Chile, Fac Med, Sci Image Anal Lab, Santiago, Chile
[3] Univ Chile, Fac Med, Lab Expt Ontogeny, Santiago, Chile
来源
2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI | 2023年
关键词
Nuclei segmentation; Light sheet fluorescence microscopy; Deep Learning; U-net;
D O I
10.1109/CAI54212.2023.00137
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, deep-learning has been used successfully to solve difficult problems in fluorescence microscopy field. In this work, we propose a Drosophila 3D Nuclei segmentation based on a pipeline that detects nuclei centers and then segments each detected nucleus individually, using a different 3D U-net for detection and segmentation steps. Our method is among the top-3 performers in the Cell Tracking Challenge segmentation benchmark for Light Sheet Microscopy Drosophila dataset, reaching a final score of 0.827. The proposed methodology: i) allows the utilization of a U-net model to perform a detection task, and ii) requires much fewer training samples than direct segmentation of the entire volume, reducing the manual annotation effort.
引用
收藏
页码:309 / 310
页数:2
相关论文
共 50 条
  • [41] Automatic Segmentation and Scoring of 3D in Vitro Skin Models Using Deep Learning Methods
    Hertlein, Anna-Sophia
    Wussmann, Maximiliane
    Boche, Benjamin
    Pracht, Felix
    Holzer, Siegfried
    Groeber-Becker, Florian
    Wesarg, Stefan
    DIGITAL AND COMPUTATIONAL PATHOLOGY, MEDICAL IMAGING 2024, 2024, 12933
  • [42] Deep learning for detection and 3D segmentation of maxillofacial bone lesions in cone beam CT
    Talia Yeshua
    Shmuel Ladyzhensky
    Amal Abu-Nasser
    Ragda Abdalla-Aslan
    Tami Boharon
    Avital Itzhak-Pur
    Asher Alexander
    Akhilanand Chaurasia
    Adir Cohen
    Jacob Sosna
    Isaac Leichter
    Chen Nadler
    European Radiology, 2023, 33 : 7507 - 7518
  • [43] 3D Visualization and Quantitative Assessment of the Pulmonary Arteries on CT Using Deep Learning Segmentation
    Kim, Jessica
    Gupta, Diviya
    LeComte, Matthew
    Hsiao, Albert
    Hahn, Lewis
    CIRCULATION, 2023, 148
  • [44] Segmentation of Cell Nuclei in Fluorescence Microscopy Images Using Deep Learning
    Narotamo, Hemaxi
    Sanches, J. Miguel
    Silveira, Margarida
    PATTERN RECOGNITION AND IMAGE ANALYSIS, PT I, 2020, 11867 : 53 - 64
  • [45] On evaluating CT image enhancement techniques for deep learning based 3D liver segmentation
    Gul, Sidra
    Khan, Muhammad Salman
    2022 GLOBAL CONFERENCE ON WIRELESS AND OPTICAL TECHNOLOGIES (GCWOT), 2022, : 73 - 78
  • [46] Deep learning based tumor detection and segmentation for automated 3D breast ultrasound imaging
    Barkhof, Francien
    Abbring, Silvia
    Pardasani, Rohit
    Awasthi, Navchetan
    PROCEEDINGS OF THE 2024 IEEE SOUTH ASIAN ULTRASONICS SYMPOSIUM, SAUS 2024, 2024,
  • [47] Obscured tree branches segmentation and 3D reconstruction using deep learning and geometrical constraints
    Kok, Eugene
    Wang, Xing
    Chen, Chao
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 210
  • [48] Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches
    Zhou, Xiangrong
    DEEP LEARNING IN MEDICAL IMAGE ANALYSIS: CHALLENGES AND APPLICATIONS, 2020, 1213 : 135 - 147
  • [49] Deep learning for detection and 3D segmentation of maxillofacial bone lesions in cone beam CT
    Yeshua, Talia
    Ladyzhensky, Shmuel
    Abu-Nasser, Amal
    Abdalla-Aslan, Ragda
    Boharon, Tami
    Itzhak-Pur, Avital
    Alexander, Asher
    Chaurasia, Akhilanand
    Cohen, Adir
    Sosna, Jacob
    Leichter, Isaac
    Nadler, Chen
    EUROPEAN RADIOLOGY, 2023, 33 (11) : 7507 - 7518
  • [50] Scaffold-A549: A Benchmark 3D Fluorescence Image Dataset for Unsupervised Nuclei Segmentation
    Kai Yao
    Kaizhu Huang
    Jie Sun
    Linzhi Jing
    Dejian Huang
    Curran Jude
    Cognitive Computation, 2021, 13 : 1603 - 1608