3D Nuclei Segmentation through Deep Learning

被引:1
作者
Rojas, Roberto [1 ]
Navarro, Carlos F. [2 ]
Orellana, Gabriel A.
Lemus, Carmen Gloria C. [3 ]
Castaneda, Victor [1 ]
机构
[1] Univ Chile, Fac Med, Med Technol Dept, Santiago, Chile
[2] Univ Chile, Fac Med, Sci Image Anal Lab, Santiago, Chile
[3] Univ Chile, Fac Med, Lab Expt Ontogeny, Santiago, Chile
来源
2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI | 2023年
关键词
Nuclei segmentation; Light sheet fluorescence microscopy; Deep Learning; U-net;
D O I
10.1109/CAI54212.2023.00137
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, deep-learning has been used successfully to solve difficult problems in fluorescence microscopy field. In this work, we propose a Drosophila 3D Nuclei segmentation based on a pipeline that detects nuclei centers and then segments each detected nucleus individually, using a different 3D U-net for detection and segmentation steps. Our method is among the top-3 performers in the Cell Tracking Challenge segmentation benchmark for Light Sheet Microscopy Drosophila dataset, reaching a final score of 0.827. The proposed methodology: i) allows the utilization of a U-net model to perform a detection task, and ii) requires much fewer training samples than direct segmentation of the entire volume, reducing the manual annotation effort.
引用
收藏
页码:309 / 310
页数:2
相关论文
共 50 条
  • [11] 3D Detection of ALMA Sources Through Deep Learning
    Veneri, Michele Delli
    Tychoniec, Lukasz
    Guglielmetti, Fabrizia
    Villard, Eric
    Longo, Giuseppe
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 1752 : 269 - 280
  • [12] DeepEdit: Deep Editable Learning for Interactive Segmentation of 3D Medical Images
    Diaz-Pinto, Andres
    Mehta, Pritesh
    Alle, Sachidanand
    Asad, Muhammad
    Brown, Richard
    Nath, Vishwesh
    Ihsani, Alvin
    Antonelli, Michela
    Palkovics, Daniel
    Pinter, Csaba
    Alkalay, Ron
    Pieper, Steve
    Roth, Holger R.
    Xu, Daguang
    Dogra, Prerna
    Vercauteren, Tom
    Feng, Andrew
    Quraini, Abood
    Ourselin, Sebastien
    Cardoso, M. Jorge
    DATA AUGMENTATION, LABELLING, AND IMPERFECTIONS (DALI 2022), 2022, 13567 : 11 - 21
  • [13] Subcortical segmentation of the fetal brain in 3D ultrasound using deep learning
    Hesse, Linde S.
    Aliasi, Moska
    Moser, Felipe
    Haak, Monique C.
    Xie, Weidi
    Jenkinson, Mark
    Namburete, Ana I. L.
    NEUROIMAGE, 2022, 254
  • [14] Underwater Pipe and Valve 3D Recognition Using Deep Learning Segmentation
    Martin-Abadal, Miguel
    Pinar-Molina, Manuel
    Martorell-Torres, Antoni
    Oliver-Codina, Gabriel
    Gonzalez-Cid, Yolanda
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2021, 9 (01) : 1 - 14
  • [15] Novel deep learning methods for 3D flow field segmentation and classification
    Bai, Xiaorui
    Wang, Wenyong
    Zhang, Jun
    Wang, Yueqing
    Xiang, Yu
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 251
  • [16] Efficient 3D Deep Learning Model for Medical Image Semantic Segmentation
    Alalwan, Nasser
    Abozeid, Amr
    ElHabshy, AbdAllah A.
    Alzahrani, Ahmed
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 1231 - 1239
  • [17] Tooth Defect Segmentation in 3D Mesh Scans Using Deep Learning
    Chen, Hao
    Ge, Yuhao
    Wei, Jiahao
    Xiong, Huimin
    Liu, Zuozhu
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT III, 2022, 13606 : 180 - 191
  • [18] 3D Hand Gestures Segmentation and Optimized Classification Using Deep Learning
    Khan, Fawad Salam
    Mohd, Mohd Norzali Haji
    Soomro, Dur Muhammad
    Bagchi, Susama
    Khan, M. Danial
    IEEE ACCESS, 2021, 9 : 131614 - 131624
  • [19] Deep Learning for 3D Scene Reconstruction and Segmentation from Stereo Images
    Kniaz, Vladimir V.
    Knyaz, Vladimir A.
    Ippolitov, Evgeny, V
    Novikov, Mikhail M.
    Grodzistky, Lev
    Moshkantsev, Petr
    MULTIMODAL SENSING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS II, 2021, 11785
  • [20] Liver Tumors Segmentation Using 3D SegNet Deep Learning Approach
    Nallasivan G.
    Ramachandran V.
    Alroobaea R.
    Almotiri J.
    Computer Systems Science and Engineering, 2023, 45 (02): : 1655 - 1677