Thermodynamic Entropy as a Noether Invariant from Contact Geometry

被引:8
作者
Bravetti, Alessandro [1 ]
Garcia-Ariza, Miguel Angel [1 ]
Tapias, Diego [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, AP 70543, Ciudad De Mexico 04510, Mexico
[2] Univ Gottingen, Inst Theoret Phys, D-37073 Gottingen, Germany
关键词
Noether's theorem; Hamiltonian systems; contact geometry; entropy; thermostatted systems; DYNAMICS;
D O I
10.3390/e25071082
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a formulation of Noether's theorem for contact Hamiltonian systems to derive a relation between the thermodynamic entropy and the Noether invariant associated with time-translational symmetry. In the particular case of thermostatted systems at equilibrium, we show that the total entropy of the system plus the reservoir are conserved as a consequence thereof. Our results contribute to understanding thermodynamic entropy from a geometric point of view.
引用
收藏
页数:9
相关论文
共 41 条
  • [1] Contact geometry for simple thermodynamical systems with friction
    Anahory Simoes, Alexandre
    de Leon, Manuel
    Lainz Valcazar, Manuel
    Martin de Diego, David
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2241):
  • [2] Invariant measures for contact Hamiltonian systems: symplectic sandwiches with contact bread
    Bravetti, A.
    de Leon, M.
    Marrero, J. C.
    Padron, E.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (45)
  • [3] Thermostat algorithm for generating target ensembles
    Bravetti, A.
    Tapias, D.
    [J]. PHYSICAL REVIEW E, 2016, 93 (02)
  • [4] Liouville's theorem and the canonical measure for nonconservative systems from contact geometry
    Bravetti, A.
    Tapias, D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (24)
  • [5] A geometric approach to the generalized Noether theorem
    Bravetti, Alessandro
    Garcia-Chung, Angel
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (09)
  • [6] Contact geometry and thermodynamics
    Bravetti, Alessandro
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16
  • [7] Contact Hamiltonian mechanics
    Bravetti, Alessandro
    Cruz, Hans
    Tapias, Diego
    [J]. ANNALS OF PHYSICS, 2017, 376 : 17 - 39
  • [8] Contact manifolds and dissipation, classical and quantum
    Ciaglia, F. M.
    Cruz, H.
    Marmo, G.
    [J]. ANNALS OF PHYSICS, 2018, 398 : 159 - 179
  • [9] Entropy production and phase space volume contraction
    Daems, D
    Nicolis, G
    [J]. PHYSICAL REVIEW E, 1999, 59 (04): : 4000 - 4006
  • [10] Time-dependent contact mechanics
    de Leon, Manuel
    Gaset, Jordi
    Gracia, Xavier
    Munoz-Lecanda, Miguel C.
    Rivas, Xavier
    [J]. MONATSHEFTE FUR MATHEMATIK, 2023, 201 (04): : 1149 - 1183