Multilevel Context Feature Fusion for Semantic Segmentation of ALS Point Cloud

被引:12
作者
Zeng, Tao [1 ]
Luo, Fulin [2 ]
Guo, Tan [3 ]
Gong, Xiuwen [4 ]
Xue, Jingyun [1 ]
Li, Hanshan [1 ]
机构
[1] Xian Technol Univ, Sch Mechatron Engn, Xian 710054, Peoples R China
[2] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[4] Univ Sydney, Fac Engn, Camperdown, NSW 2002, Australia
基金
中国国家自然科学基金;
关键词
Attention mechanism; encoder-decoder structure; kernel point convolution (KPConv); multilevel fusion; point cloud semantic segmentation; NETWORK; CLASSIFICATION;
D O I
10.1109/LGRS.2023.3294246
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Semantic segmentation of airborne laser scanning (ALS) point clouds using deep learning is a hot research in remote sensing and photogrammetry. A current trend is to aggregate contextual features from different scales for boosting network generalization and diversity discrimination capabilities. One main challenge is how to achieve effective fusion with multi-scale information. In this letter, we propose a multilevel context feature fusion network (MCFN) for semantic segmentation of ALS point cloud based on an encoder-decoder structure. More specifically, we design the squeeze-expansion shared multilayer perceptron (SE-MLP) module following kernel point convolution (KPConv) in the encoding stage, which can extend the receptive field of KPConv. To aggregate low-level features and highlevel representations, we establish channel self-attention between skip connections. In the decoding stage, we develop a crosslayer attention fusion (CAF) module to generate additional discriminative channel features by fusing multiscale features at different upsampling layers. Experiments on the ISPRS and LASDU datasets demonstrate the superiority of the proposed method. Code: https://github.com/SC-shendazt/MCFN.
引用
收藏
页数:5
相关论文
共 27 条
[1]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[2]   GraNet: Global relation-aware attentional network for semantic segmentation of ALS point clouds [J].
Huang, Rong ;
Xu, Yusheng ;
Stilla, Uwe .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 177 :1-20
[3]   VD-LAB: A view-decoupled network with local-global aggregation bridge for airborne laser scanning point cloud classification [J].
Li, Jihao ;
Weinmann, Martin ;
Sun, Xian ;
Diao, Wenhui ;
Feng, Yingchao ;
Hinz, Stefan ;
Fu, Kun .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 186 :19-33
[4]   DANCE-NET: Density-aware convolution networks with context encoding for airborne LiDAR point cloud classification [J].
Li, Xiang ;
Wang, Lingjing ;
Wang, Mingyang ;
Wen, Congcong ;
Fang, Yi .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 166 :128-139
[5]   DenseKPNET: Dense Kernel Point Convolutional Neural Networks for Point Cloud Semantic Segmentation [J].
Li, Yong ;
Li, Xu ;
Zhang, Zhenxin ;
Shuang, Feng ;
Lin, Qi ;
Jiang, Jincheng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[6]  
Li YZ, 2018, ADV NEUR IN, V31
[7]   Focal Loss for Dense Object Detection [J].
Lin, Tsung-Yi ;
Goyal, Priya ;
Girshick, Ross ;
He, Kaiming ;
Dollar, Piotr .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :2999-3007
[8]   Local and global encoder network for semantic segmentation of Airborne laser scanning point clouds [J].
Lin, Yaping ;
Vosselman, George ;
Cao, Yanpeng ;
Yang, Michael Ying .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 176 :151-168
[9]  
Liu Y., 2021, P NEURIPS WORKSH, P1
[10]   A Closer Look at Local Aggregation Operators in Point Cloud Analysis [J].
Liu, Ze ;
Hu, Han ;
Cao, Yue ;
Zhang, Zheng ;
Tong, Xin .
COMPUTER VISION - ECCV 2020, PT XXIII, 2020, 12368 :326-342