A space-time Galerkin Müntz spectral method for the time fractional Fokker-Planck equation

被引:0
|
作者
Zeng, Wei [1 ]
He, Jiawei [2 ]
Xiao, Aiguo [3 ,4 ,5 ,6 ]
机构
[1] Beijing Comp Sci Res Ctr, Mech Div, Beijing, Peoples R China
[2] Guangxi Univ, Coll Math & Informat Sci, Nanning, Peoples R China
[3] Xiangtan Univ, Hunan Key Lab Comp & Simulat Sci & Engn, Xiangtan, Peoples R China
[4] Xiangtan Univ, Natl Ctr Appl Math Hunan, Xiangtan, Peoples R China
[5] Xiangtan Univ, Hunan Key Lab Comp & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
[6] Xiangtan Univ, Natl Ctr Appl Math Hunan, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Time fractional Fokker-Planck equation; smooth and non-smooth solutions; well-posedness; Muntz Jacobi polynomials; space-time Galerkin spectral method; error estimate; FINITE-DIFFERENCE SCHEME; ANOMALOUS DIFFUSION; WAVE-EQUATIONS; ERROR ANALYSIS; RANDOM-WALKS; ORDER; RESPECT; APPROXIMATIONS;
D O I
10.1080/00207160.2024.2332957
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a space-time Galerkin spectral method for the time fractional Fokker-Planck equation. This approach is based on combining temporal Muntz Jacobi polynomials spectral method with spatial Legendre polynomials spectral method. Based on the well-posedness and regularity for the re-scaled problem of a linear model problem which reflects the main difficulty for solving the equivalent equation (i.e. the time fractional convection-diffusion equation): the singularity of the solution in time, we explain in detail why we use the Muntz polynomials to approximate in time. The well-posedness and stability of the discrete scheme as well as its continuous problem are established. Moreover, the error estimation of the space-time approach is derived. We find that the proposed method can attain spectral accuracy regardless of whether the solution of the original equation is smooth or non-smooth. Numerical experiments substantiate the theoretical results.
引用
收藏
页码:407 / 431
页数:25
相关论文
共 50 条
  • [1] A Space-Time Petrov-Galerkin Spectral Method for Time Fractional Fokker-Planck Equation with Nonsmooth Solution
    Zeng, Wei
    Xiao, Aiguo
    Bu, Weiping
    Wang, Junjie
    Li, Shucun
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (01) : 89 - 105
  • [2] A NOVEL HIGH ORDER SPACE-TIME SPECTRAL METHOD FOR THE TIME FRACTIONAL FOKKER-PLANCK EQUATION
    Zheng, Minling
    Liu, Fawang
    Turner, Ian
    Anh, Vo
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02) : A701 - A724
  • [3] Numerical Method for the Time Fractional Fokker-Planck Equation
    Cao, Xue-Nian
    Fu, Jiang-Li
    Huang, Hu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (06) : 848 - 863
  • [4] A numerical algorithm for the space and time fractional Fokker-Planck equation
    Vanani, S. Karimi
    Aminataei, A.
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2012, 22 (08) : 1037 - 1052
  • [5] An accurate and efficient space-time Galerkin spectral method for the subdiffusion equation
    Zeng, Wei
    Xu, Chuanju
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (10) : 2387 - 2408
  • [6] A Space-Time Petrov-Galerkin Spectral Method for Time Fractional Diffusion Equation
    Sheng, Changtao
    Shen, Jie
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (04) : 854 - 876
  • [7] Finite difference scheme for the time-fractional Fokker-Planck equation with time- and space-dependent forcing
    Yan, Shuqing
    Cui, Mingrong
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (02) : 379 - 398
  • [8] Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion
    Lv, Longjin
    Qiu, Weiyuan
    Ren, Fuyao
    JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (04) : 619 - 628
  • [9] A transformed L1 Legendre-Galerkin spectral method for time fractional Fokker-Planck equations
    Huang, Diandian
    Huang, Xin
    Qin, Tingting
    Zhou, Yongtao
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (02) : 799 - 812
  • [10] An extension of the Gegenbauer pseudospectral method for the time fractional Fokker-Planck equation
    Izadkhah, Mohammad Mahdi
    Saberi-Nadjafi, Jafar
    Toutounian, Faezeh
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (04) : 1301 - 1315