Predicting ischemic stroke patients' prognosis changes using machine learning in a nationwide stroke registry

被引:1
作者
Lin, Ching-Heng [1 ,2 ,3 ]
Chen, Yi-An [2 ]
Jeng, Jiann-Shing [4 ,5 ]
Sun, Yu [6 ]
Wei, Cheng-Yu [7 ]
Yeh, Po-Yen [8 ]
Chang, Wei-Lun [9 ]
Fann, Yang C. [1 ]
Hsu, Kai-Cheng [10 ,11 ,12 ]
Lee, Jiunn-Tay [13 ]
机构
[1] Natl Inst Neurol, Div Intramural Res Disorders & Stroke, NIH, 9000 Rockville Pike, Bethesda, MD 20892 USA
[2] Chang Gung Mem Hosp, Ctr Artificial Intelligence Med, Taoyuan, Taiwan
[3] Chang Gung Univ, Artificial Intelligence, Taoyuan, Taiwan
[4] Natl Taiwan Univ Hosp, Stroke Ctr, Taipei, Taiwan
[5] Natl Taiwan Univ Hosp, Dept Neurol, Taipei, Taiwan
[6] En Chu Kong Hosp, Dept Neurol, New Taipei, Taiwan
[7] Chinese Culture Univ, Coll Kinesiol & Hlth, Dept Exercise & Hlth Promot, Taipei, Taiwan
[8] St Martin de Porres Hosp, Dept Neurol, Chiayi, Taiwan
[9] Show Chwan Mem Hosp, Dept Neurol, Changhua, Changhua County, Taiwan
[10] China Med Univ, Dept Med, Taichung, Taiwan
[11] China Med Univ Hosp, Artificial Intelligence Ctr Med Diag, 2 Yude Rd, Taichung 404332, Taiwan
[12] China Med Univ Hosp, Dept Neurol, Taichung, Taiwan
[13] Triserv Gen Hosp, Natl Def Med Ctr, Dept Neurol, Taipei, Taiwan
关键词
Ischemic stroke; Machine learning; Prognosis changes; Risk factors; Nation-wide registry database; TOTALED HEALTH-RISKS; EVENTS THRIVE SCORE; OUTCOMES;
D O I
10.1007/s11517-024-03073-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Accurately predicting the prognosis of ischemic stroke patients after discharge is crucial for physicians to plan for long-term health care. Although previous studies have demonstrated that machine learning (ML) shows reasonably accurate stroke outcome predictions with limited datasets, to identify specific clinical features associated with prognosis changes after stroke that could aid physicians and patients in devising improved recovery care plans have been challenging. This study aimed to overcome these gaps by utilizing a large national stroke registry database to assess various prediction models that estimate how patients' prognosis changes over time with associated clinical factors. To properly evaluate the best predictive approaches currently available and avoid prejudice, this study employed three different prognosis prediction models including a statistical logistic regression model, commonly used clinical-based scores, and a latest high-performance ML-based XGBoost model. The study revealed that the XGBoost model outperformed other two traditional models, achieving an AUROC of 0.929 in predicting the prognosis changes of stroke patients followed for 3 months. In addition, the XGBoost model maintained remarkably high precision even when using only selected 20 most relevant clinical features compared to full clinical datasets used in the study. These selected features closely correlated with significant changes in clinical outcomes for stroke patients and showed to be effective for predicting prognosis changes after discharge, allowing physicians to make optimal decisions regarding their patients' recovery.
引用
收藏
页码:2343 / 2354
页数:12
相关论文
共 50 条
[41]   Machine Learning Algorithms Versus Thresholding to Segment Ischemic Regions in Patients With Acute Ischemic Stroke [J].
Tomasetti, Luca ;
Hollesli, Liv Jorunn ;
Engan, Kjersti ;
Kurz, Kathinka Daehli ;
Kurz, Martin Wilhelm ;
Khanmohammadi, Mahdieh .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (02) :660-672
[42]   Machine Learning Models for Predicting Early Neurological Deterioration and Risk Classification of Acute Ischemic Stroke [J].
Yang, Huan ;
Lv, Zhe ;
Wang, Wenxi ;
Wang, Yaohui ;
Chen, Jie ;
Wang, Zhanqiu .
CLINICAL AND APPLIED THROMBOSIS-HEMOSTASIS, 2023, 29
[43]   Predicting Outcome of Endovascular Treatment for Acute Ischemic Stroke: Potential Value of Machine Learning Algorithms [J].
van Os, Hendrikus J. A. ;
Ramos, Lucas A. ;
Hilbert, Adam ;
van Leeuwen, Matthijs ;
van Walderveen, Marianne A. A. ;
Kruyt, Nyika D. ;
Dippel, Diederik W. J. ;
Steyerberg, Ewout W. ;
van der Schaaf, Irene C. ;
Lingsma, Hester F. ;
Schonewille, Wouter J. ;
Majoie, Charles B. L. M. ;
Olabarriaga, Silvia D. ;
Zwinderman, Koos H. ;
Venema, Esmee ;
Marquering, Henk A. ;
Wermer, Marieke J. H. .
FRONTIERS IN NEUROLOGY, 2018, 9
[44]   Triglyceride Glucose Index and Prognosis of Patients With Ischemic Stroke [J].
Zhou, Yimo ;
Pan, Yuesong ;
Yan, Hongyi ;
Wang, Yilong ;
Li, Zixiao ;
Zhao, Xingquan ;
Li, Hao ;
Meng, Xia ;
Wang, Chunxue ;
Liu, Liping ;
Wang, Yongjun .
FRONTIERS IN NEUROLOGY, 2020, 11
[45]   Using machine learning to predict atrial fibrillation diagnosed after ischemic stroke [J].
Zheng, Xiaohan ;
Wang, Fusang ;
Zhang, Juan ;
Cui, Xiaoli ;
Jiang, Fuping ;
Chen, Nihong ;
Zhou, Junshan ;
Chen, Jinsong ;
Lin, Song ;
Zou, Jianjun .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2022, 347 :21-27
[46]   Gender differences in the age-stratified prevalence of risk factors in Korean ischemic stroke patients: a nationwide stroke registry-based cross-sectional study [J].
Park, Tai Hwan ;
Ko, Youngchai ;
Lee, Soo Joo ;
Lee, Kyung Bok ;
Lee, Jun ;
Han, Moon-Ku ;
Park, Jong-Moo ;
Kim, Dong-Eog ;
Cho, Yong-Jin ;
Hong, Keun-Sik ;
Kim, Joon-Tae ;
Cho, Ki-Hyun ;
Kim, Dae-Hyun ;
Cha, Jae-Kwan ;
Yu, Kyung-Ho ;
Lee, Byung-Chul ;
Yoon, Byung-Woo ;
Lee, Ji Sung ;
Lee, Juneyoung ;
Gorelick, Philip B. ;
Bae, Hee-Joon .
INTERNATIONAL JOURNAL OF STROKE, 2014, 9 (06) :759-765
[47]   Machine learning-based scoring model for predicting mortality in ICU-admitted ischemic stroke patients with moderate to severe consciousness disorders [J].
Zhou, Zhou ;
Chen, Bo ;
Mei, Zhao-Jun ;
Chen, Wei ;
Cao, Wei ;
Xu, En-Xi ;
Wang, Jun ;
Ye, Lei ;
Cheng, Hong-Wei .
FRONTIERS IN NEUROLOGY, 2025, 16
[48]   Classification of stroke disease using machine learning algorithms [J].
Govindarajan, Priya ;
Soundarapandian, Ravichandran Kattur ;
Gandomi, Amir H. ;
Patan, Rizwan ;
Jayaraman, Premaladha ;
Manikandan, Ramachandran .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (03) :817-828
[49]   Prediction of incident atrial fibrillation in post-stroke patients using machine learning: a French nationwide study [J].
Bisson, Arnaud ;
Lemrini, Yassine ;
El-Bouri, Wahbi ;
Bodin, Alexandre ;
Angoulvant, Denis ;
Lip, Gregory Y. H. ;
Fauchier, Laurent .
CLINICAL RESEARCH IN CARDIOLOGY, 2023, 112 (06) :815-823
[50]   Prediction of incident atrial fibrillation in post-stroke patients using machine learning: a French nationwide study [J].
Arnaud Bisson ;
Yassine Lemrini ;
Wahbi El-Bouri ;
Alexandre Bodin ;
Denis Angoulvant ;
Gregory Y. H. Lip ;
Laurent Fauchier .
Clinical Research in Cardiology, 2023, 112 :815-823