AMCFCN: attentive multi-view contrastive fusion clustering net

被引:0
|
作者
Xiao, Huarun [1 ]
Hong, Zhiyong [1 ]
Xiong, Liping [1 ]
Zeng, Zhiqiang [1 ]
机构
[1] Wuyi Univ, Coll Elect & Informat Engn, Jiangmen, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view Clustering; Contrastive Learning; Attention Mechanism;
D O I
10.7717/peerj-cs.1906
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Advances in deep learning have propelled the evolution of multi-view clustering techniques, which strive to obtain a view-common representation from multi-view datasets. However, the contemporary multi-view clustering community confronts two prominent challenges. One is that view-specific representations lack guarantees to reduce noise introduction, and another is that the fusion process compromises view-specific representations, resulting in the inability to capture efficient information from multi-view data. This may negatively affect the accuracy of the clustering results. In this article, we introduce a novel technique named the "contrastive attentive strategy"to address the above problems. Our approach effectively extracts robust viewspecific representations from multi-view data with reduced noise while preserving view completeness. This results in the extraction of consistent representations from multi-view data while preserving the features of view-specific representations. We integrate view-specific encoders, a hybrid attentive module, a fusion module, and deep clustering into a unified framework called AMCFCN. Experimental results on four multi-view datasets demonstrate that our method, AMCFCN, outperforms seven competitive multi-view clustering methods. Our source code is available at https: //github.com/xiaohuarun/AMCFCN.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [21] Multi-view Document Clustering with Joint Contrastive Learning
    Bai, Ruina
    Huang, Ruizhang
    Qin, Yongbin
    Chen, Yanping
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2022, PT I, 2022, 13551 : 706 - 719
  • [22] DealMVC: Dual Contrastive Calibration for Multi-view Clustering
    Yang, Xihong
    Jin Jiaqi
    Wang, Siwei
    Liang, Ke
    Liu, Yue
    Wen, Yi
    Liu, Suyuan
    Zhou, Sihang
    Liu, Xinwang
    Zhu, En
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 337 - 346
  • [23] Contrastive Consensus Graph Learning for Multi-View Clustering
    Shiping Wang
    Xincan Lin
    Zihan Fang
    Shide Du
    Guobao Xiao
    IEEE/CAAJournalofAutomaticaSinica, 2022, 9 (11) : 2027 - 2030
  • [24] Selective Contrastive Learning for Unpaired Multi-View Clustering
    Xin, Like
    Yang, Wanqi
    Wang, Lei
    Yang, Ming
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1749 - 1763
  • [25] Graph Structure Aware Contrastive Multi-View Clustering
    Chen, Rui
    Tang, Yongqiang
    Cai, Xiangrui
    Yuan, Xiaojie
    Feng, Wenlong
    Zhang, Wensheng
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (03) : 260 - 274
  • [26] Adaptive Fusion of Multi-View for Graph Contrastive Recommendation
    Yang, Mengduo
    Yuan, Yi
    Zhou, Jie
    Xi, Meng
    Pan, Xiaohua
    Li, Ying
    Wu, Yangyang
    Zhang, Jinshan
    Yin, Jianwei
    PROCEEDINGS OF THE EIGHTEENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2024, 2024, : 228 - 237
  • [27] Cross-View Fusion for Multi-View Clustering
    Huang, Zhijie
    Huang, Binqiang
    Zheng, Qinghai
    Yu, Yuanlong
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 621 - 625
  • [28] Multi-view fusion for recommendation with attentive deep neural network
    Jing, Wang
    Sangaiah, Arun Kumar
    Wei, Liu
    Shaopeng, Liu
    Lei, Liu
    Ruishi, Liang
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (04) : 2619 - 2629
  • [29] Multi-view fusion for recommendation with attentive deep neural network
    Wang Jing
    Arun Kumar Sangaiah
    Liu Wei
    Liu Shaopeng
    Liu Lei
    Liang Ruishi
    Evolutionary Intelligence, 2022, 15 : 2619 - 2629
  • [30] Multi-level Feature Learning for Contrastive Multi-view Clustering
    Xu, Jie
    Tang, Huayi
    Ren, Yazhou
    Peng, Liang
    Zhu, Xiaofeng
    He, Lifang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 16030 - 16039