AMCFCN: attentive multi-view contrastive fusion clustering net

被引:0
|
作者
Xiao, Huarun [1 ]
Hong, Zhiyong [1 ]
Xiong, Liping [1 ]
Zeng, Zhiqiang [1 ]
机构
[1] Wuyi Univ, Coll Elect & Informat Engn, Jiangmen, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view Clustering; Contrastive Learning; Attention Mechanism;
D O I
10.7717/peerj-cs.1906
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Advances in deep learning have propelled the evolution of multi-view clustering techniques, which strive to obtain a view-common representation from multi-view datasets. However, the contemporary multi-view clustering community confronts two prominent challenges. One is that view-specific representations lack guarantees to reduce noise introduction, and another is that the fusion process compromises view-specific representations, resulting in the inability to capture efficient information from multi-view data. This may negatively affect the accuracy of the clustering results. In this article, we introduce a novel technique named the "contrastive attentive strategy"to address the above problems. Our approach effectively extracts robust viewspecific representations from multi-view data with reduced noise while preserving view completeness. This results in the extraction of consistent representations from multi-view data while preserving the features of view-specific representations. We integrate view-specific encoders, a hybrid attentive module, a fusion module, and deep clustering into a unified framework called AMCFCN. Experimental results on four multi-view datasets demonstrate that our method, AMCFCN, outperforms seven competitive multi-view clustering methods. Our source code is available at https: //github.com/xiaohuarun/AMCFCN.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 50 条
  • [21] Information bottleneck fusion for deep multi-view clustering
    Hu, Jie
    Yang, Chenghao
    Huang, Kai
    Wang, Hongjun
    Peng, Bo
    Li, Tianrui
    KNOWLEDGE-BASED SYSTEMS, 2024, 289
  • [22] Composite attention mechanism network for deep contrastive multi-view clustering
    Du, Tingting
    Zheng, Wei
    Xu, Xingang
    NEURAL NETWORKS, 2024, 176
  • [23] Self-weighted dual contrastive multi-view clustering network
    Huajuan Huang
    Yanbin Mei
    Xiuxi Wei
    Yongquan Zhou
    Scientific Reports, 15 (1)
  • [24] Adaptive Fusion of Multi-View for Graph Contrastive Recommendation
    Yang, Mengduo
    Yuan, Yi
    Zhou, Jie
    Xi, Meng
    Pan, Xiaohua
    Li, Ying
    Wu, Yangyang
    Zhang, Jinshan
    Yin, Jianwei
    PROCEEDINGS OF THE EIGHTEENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2024, 2024, : 228 - 237
  • [25] View-Driven Multi-View Clustering via Contrastive Double-Learning
    Liu, Shengcheng
    Zhu, Changming
    Li, Zishi
    Yang, Zhiyuan
    Gu, Wenjie
    ENTROPY, 2024, 26 (06)
  • [26] Cross-View Fusion for Multi-View Clustering
    Huang, Zhijie
    Huang, Binqiang
    Zheng, Qinghai
    Yu, Yuanlong
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 621 - 625
  • [27] Multi-view fusion for recommendation with attentive deep neural network
    Jing, Wang
    Sangaiah, Arun Kumar
    Wei, Liu
    Shaopeng, Liu
    Lei, Liu
    Ruishi, Liang
    EVOLUTIONARY INTELLIGENCE, 2022, 15 (04) : 2619 - 2629
  • [28] Multi-view fusion for recommendation with attentive deep neural network
    Wang Jing
    Arun Kumar Sangaiah
    Liu Wei
    Liu Shaopeng
    Liu Lei
    Liang Ruishi
    Evolutionary Intelligence, 2022, 15 : 2619 - 2629
  • [29] Multi-View Clustering with Spectral Structure Fusion
    Liu J.
    Wang Y.
    Qian Y.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2022, 59 (04): : 922 - 935
  • [30] Deep contrastive multi-view clustering with doubly enhanced commonality
    Yang, Zhiyuan
    Zhu, Changming
    Li, Zishi
    MULTIMEDIA SYSTEMS, 2024, 30 (04)