GTAD: a graph-based approach for cell spatial composition inference from integrated scRNA-seq and ST-seq data

被引:4
作者
Zhang, Tianjiao [1 ]
Zhang, Ziheng [1 ]
Li, Liangyu [1 ]
Dong, Benzhi [1 ]
Wang, Guohua [1 ,2 ,4 ]
Zhang, Dandan [3 ,5 ]
机构
[1] Northeast Forestry Univ, Coll Comp & Control Engn, Harbin, Peoples R China
[2] Northeast Forestry Univ, Key Lab Tree Genet & Breeding, Harbin, Peoples R China
[3] Harbin Med Univ, Affiliated Hosp 1, Dept Gynaecol & Obstet, Harbin, Peoples R China
[4] Northeast Forestry Univ, Coll Comp & Control Engn, Harbin 150040, Peoples R China
[5] Harbin Med Univ, Affiliated Hosp 1, Dept Obstet & Gynecol, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
cell-type identification; graph attention networks; single-cell RNA sequencing; spatial transcriptomics; GENOME-WIDE EXPRESSION; SINGLE-CELL; GENE-EXPRESSION; TRANSCRIPTOMICS;
D O I
10.1093/bib/bbad469
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
With the emergence of spatial transcriptome sequencing (ST-seq), research now heavily relies on the joint analysis of ST-seq and single-cell RNA sequencing (scRNA-seq) data to precisely identify cell spatial composition in tissues. However, common methods for combining these datasets often merge data from multiple cells to generate pseudo-ST data, overlooking topological relationships and failing to represent spatial arrangements accurately. We introduce GTAD, a method utilizing the Graph Attention Network for deconvolution of integrated scRNA-seq and ST-seq data. GTAD effectively captures cell spatial relationships and topological structures within tissues using a graph-based approach, enhancing cell-type identification and our understanding of complex tissue cellular landscapes. By integrating scRNA-seq and ST data into a unified graph structure, GTAD outperforms traditional 'pseudo-ST' methods, providing robust and information-rich results. GTAD performs exceptionally well with synthesized spatial data and accurately identifies cell spatial composition in tissues like the mouse cerebral cortex, cerebellum, developing human heart and pancreatic ductal carcinoma. GTAD holds the potential to enhance our understanding of tissue microenvironments and cellular diversity in complex bio-logical systems. The source code is available at https://github.com/zzhjs/GTAD.
引用
收藏
页数:13
相关论文
共 45 条
[31]   Smooth Muscle Cells Derived From Second Heart Field and Cardiac Neural Crest Reside in Spatially Distinct Domains in the Media of the Ascending Aorta-Brief Report [J].
Sawada, Hisashi ;
Rateri, Debra L. ;
Moorleghen, Jessica J. ;
Majesky, Mark W. ;
Daugherty, Alan .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2017, 37 (09) :1722-1726
[32]   DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence [J].
Song, Qianqian ;
Su, Jing .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (05)
[33]   Visualization and analysis of gene expression in tissue sections by spatial transcriptomics [J].
Stahl, Patrik L. ;
Salmen, Fredrik ;
Vickovic, Sanja ;
Lundmark, Anna ;
Navarro, Jose Fernandez ;
Magnusson, Jens ;
Giacomello, Stefania ;
Asp, Michaela ;
Westholm, Jakub O. ;
Huss, Mikael ;
Mollbrink, Annelie ;
Linnarsson, Sten ;
Codeluppi, Simone ;
Borg, Ake ;
Ponten, Fredrik ;
Costea, Paul Igor ;
Sahlen, Pelin ;
Mulder, Jan ;
Bergmann, Olaf ;
Lundeberg, Joakim ;
Frisen, Jonas .
SCIENCE, 2016, 353 (6294) :78-82
[34]   Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2 [J].
Stickels, Robert R. ;
Murray, Evan ;
Kumar, Pawan ;
Li, Jilong ;
Marshall, Jamie L. ;
Di Bella, Daniela J. ;
Arlotta, Paola ;
Macosko, Evan Z. ;
Chen, Fei .
NATURE BIOTECHNOLOGY, 2021, 39 (03) :313-319
[35]   Comprehensive Integration of Single-Cell Data [J].
Stuart, Tim ;
Butler, Andrew ;
Hoffman, Paul ;
Hafemeister, Christoph ;
Papalexi, Efthymia ;
Mauck, William M., III ;
Hao, Yuhan ;
Stoeckius, Marlon ;
Smibert, Peter ;
Satija, Rahul .
CELL, 2019, 177 (07) :1888-+
[36]   STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing [J].
Sun, Dongqing ;
Liu, Zhaoyang ;
Li, Taiwen ;
Wu, Qiu ;
Wang, Chenfei .
NUCLEIC ACIDS RESEARCH, 2022, 50 (07) :E42
[37]  
Tang FC, 2009, NAT METHODS, V6, P377, DOI [10.1038/nmeth.1315, 10.1038/NMETH.1315]
[38]   Shared and distinct transcriptomic cell types across neocortical areas [J].
Tasic, Bosiljka ;
Yao, Zizhen ;
Graybuck, Lucas T. ;
Smith, Kimberly A. ;
Thuc Nghi Nguyen ;
Bertagnolli, Darren ;
Goldy, Jeff ;
Garren, Emma ;
Economo, Michael N. ;
Viswanathan, Sarada ;
Penn, Osnat ;
Bakken, Trygve ;
Menon, Vilas ;
Miller, Jeremy ;
Fong, Olivia ;
Hirokawa, Karla E. ;
Lathia, Kanan ;
Rimorin, Christine ;
Tieu, Michael ;
Larsen, Rachael ;
Casper, Tamara ;
Barkan, Eliza ;
Kroll, Matthew ;
Parry, Sheana ;
Shapovalova, Nadiya V. ;
Hirschstein, Daniel ;
Pendergraft, Julie ;
Sullivan, Heather A. ;
Kim, Tae Kyung ;
Szafer, Aaron ;
Dee, Nick ;
Groblewski, Peter ;
Wickersham, Ian ;
Cetin, Ali ;
Harris, Julie A. ;
Levi, Boaz P. ;
Sunkin, Susan M. ;
Madisen, Linda ;
Daigle, Tanya L. ;
Looger, Loren ;
Bernard, Amy ;
Phillips, John ;
Lein, Ed ;
Hawrylycz, Michael ;
Svoboda, Karel ;
Jones, Allan R. ;
Koch, Christof ;
Zeng, Hongkui .
NATURE, 2018, 563 (7729) :72-+
[39]   Spatially Resolved Transcriptomics Enables Dissection of Genetic Heterogeneity in Stage III Cutaneous Malignant Melanoma [J].
Thrane, Kim ;
Eriksson, Hanna ;
Maaskola, Jonas ;
Hansson, Johan ;
Lundeberg, Joakim .
CANCER RESEARCH, 2018, 78 (20) :5970-5979
[40]  
Velickovic P., 2017, STAT